Condensation in Dust-enriched Systems, by D.S. Ebel and L. Grossman,
Geochimica et Cosmochimica Acta, 1999

Results: General Effects of Dust Enrichment and Total Pressure

Complete condensation calculations were performed from 2400K down to the last temperature step where our criteria for adequate convergence could be met, usually between 1100 and 1300K, and up to dust/gas enrichment factors of 1000x relative to solar composition, hereinafter abbreviated as "dust enrichments of 1000x". The extremes of 10-3 bar and 10-6 bar were chosen to bracket the generally accepted range of Ptot in the inner solar nebula (Wood and Morfill, 1988). Results are shown at four different dust enrichments at 10-6 bar in Table 7 and at 10-3 bar in Table 8. In these tables, appearance and disappearance temperatures are defined as the highest temperature steps at which a phase is either part of or becomes absent from the stable condensate assemblage. In figures showing elemental distributions among coexisting phases, the fraction of an element present in a phase at its appearance temperature is extrapolated to zero in the next highest temperature step.

Table 7. Temperatures (K) of appearance and disappearance of condensates at Ptot = 10-6 bar as a function of dust/gas enrichment.

Dust/Gas Enrichment:

1x

100x

500x

1000x

Condensate

In

Out

In

Out

In

Out

In

Out

Corundum

1570

1470

1890

1790

2010

1930

2040

1980

Hibonite

1480

1430

1790

1750

1940

1890

1980

1950

Perovskite

1460

1270

1690

1500

1760

1610

1740

1670

Grossite

1440

1370

1760

1650

1910

1780

1960

1820

CaAl2O4

1390

1360

1680

1620

1820

1740

   

Melilite

1370

1250

1630

1470

1760

1740

   

Grossite

1360

1300

1620

1550

1740

1670

   

Liquid

       

1740

1730

1880

1370

Melilite

       

1730

1630

   

Hibonite

1320

1270

1550

1540

       

Spinel

1270

1210

1540

1430

1670

1610

1720

1660

Liquid

       

1630

1390

   

Clinopyroxene

1270

 

1500

 

1430

 

1370

 

Olivine

1240

 

1490

 

1610

 

1660

 

Sapphirine

1230

1190

           

Metallic nickel-iron

1210

 

1360

 

1420

 

1430

 

Plagioclase

1210

1190

1440

1300

1450

 

1410

 

Cordierite

1200

 

1310

         

Orthopyroxene

1190

 

1400

 

1490

 

1530

1230

Cr-spinel

1160

 

1410

 

1610

 

1660

 

Pyrophanite

   

1130

 

1230

 

1250

 

MnO

   

1090

 

1180

 

1210

 

End of Computation

1100

 

1090

 

1160

 

1200

 

Table 8. Temperatures (K) of appearance and disappearance of condensates at Ptot = 10-3 bar as a function of dust/gas enrichment.

Dust/Gas Enrichment:

1x

100x

500x

1000x

Condensate

In

Out

In

Out

In

Out

In

Out

Liquid

   

2200

1390

>2400

1400

>2400

1310

Corundum

1770

1720

           

Hibonite

1720

1680

           

Grossite

1690

1590

           

Perovskite

1680

1450

1970

1810

       

CaAl2O4

1620

1560

           

Melilite

1580

1430

           

Grossite

1560

1500

           

Hibonite

1500

1480

           

Spinel

1480

1400

1830

1710

1990

1940

2050

1990

Metallic nickel-iron

1460

 

1690

 

1780

 

1800

 

Clinopyroxene

1450

 

1440

 

1420

 

1390

 

Olivine

1440

 

1780

 

1940

 

1990

 

Plagioclase

1400

1310

1450

 

1430

 

1430

 

Orthopyroxene

1360

 

1620

 

1700

     

ß-Ti3O5

1360

1340

           

Cordierite

1330

             

Cr-spinel

1230

 

1600

 

1760

 

1710

 

Pyrophanite

   

1350

 

1400

 

1380

 

MnO

   

1300

 

1420

 

1480

 

Pyrrhotite

       

1330

 

1380

 

Whitlockite

           

1350

 

End of Computation

1210

 

1200

 

1240

 

1260

 



CONDENSATION
in
DUST-ENRICHED SYSTEMS


Denton S. Ebel (1)

Lawrence Grossman(1,2)

(1) Department of The Geophysical Sciences
The University of Chicago
5734 South Ellis Ave.
Chicago, IL 60637

(2) Enrico Fermi Institute
The University of Chicago
5640 South Ellis Ave.
Chicago, IL 60637

Submitted December 22, 1998 to

Geochimica et Cosmochimica Acta

Revised version submitted June 30, 1999
Abstract Introduction
Technique

Bulk Composition
Method of Calculation
Data for Elements and Gas Species
Data and Models for Solids
Data and Models for Silicate Liquids
Test of MELTS: Peridotite KLB-1
Transition Between Liquid Models
Results

Vapor of Solar Composition
General Effects of Dust Enrichment and Total Pressure
Oxygen Fugacity
Condensation Temperatures and Liquid Stability
Condensation at 100x Dust Enrichment, Ptot=10-3bar
Condensation at 1000x Dust Enrichment, Ptot=10-3bar
Condensation of Oxidized Iron at High Temperature
Bulk Chemical Composition of Condensates
Composition of Silicate Liquid
Composition of Spinel
Composition of Clinopyroxene
Composition of Feldspar
Composition of Metallic Nickel-Iron
Metal-Sulfide Condensate Assemblages
Discussion

Stability of Silicate Liquid in Solar Gas
Chondrules in Dust-enriched Systems
Conclusions References