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Abstract

Current understanding of life-history evolution and how demographic parameters contribute to
population dynamics across species is largely based on assumptions of either constant environ-
ments or stationary environmental variation. Meanwhile, species are faced with non-stationary
environmental conditions (changing mean, variance, or both) created by climate and landscape
change. To close the gap between contemporary reality and demographic theory, we develop a set
of transient life table response experiments (LTREs) for decomposing realised population growth
rates into contributions from specific vital rates and components of population structure. Using
transient LTREs in a theoretical framework, we reveal that established concepts in population
biology will require revision because of reliance on approaches that do not address the influence
of unstable population structure on population growth and mean fitness. Going forward, transient
LTREs will enhance understanding of demography and improve the explanatory power of models
used to understand ecological and evolutionary dynamics.
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INTRODUCTION

Population growth rates are central to ecology and evolution.
Not only do they describe changes in species abundance
within a given area, they also quantify mean fitness for a pop-
ulation of individuals sharing a particular gene or life-history
strategy (Fisher 1930), the ability of a rare mutant to invade a
more common established type (Metz et al. 1992), or the abil-
ity of rare species to invade communities of more common
residents (Chesson 2000). Not surprisingly, a major goal of
ecology and evolution is to understand the demographic
mechanisms that drive population growth and affect fitness
(Coulson et al. 2006).
For example, quantitative geneticists strive to understand the

relative influence of viability (i.e. survival) and reproductive
selection on trait change over time, as moderated by heritability
(Lande 1982). Others study life-history evolution by comparing
the demographic drivers of population dynamics across species
along an evolved phylogeny (Sæther & Bakke 2000). Population
ecologists use similar approaches to design more effective con-
servation and management strategies (Caswell 2000), and to
develop mechanistic projections of population dynamics (e.g.
Jenouvrier et al. 2014). Community biologists have even found
that the processes controlling species coexistence and biodiver-
sity can be better understood by identifying the specific demo-
graphic parameters that contribute most to the outcomes of
competition (Adler et al. 2010).
Prospective perturbation analyses predict the change in

demographic outcomes that would result from any specified

change in the parameters that determine those outcomes,
whereas retrospective perturbation analyses, such as life table
response experiments (LTRE), aim to decompose the effects
of realised change in parameters on past demographic out-
comes (Caswell 2000). LTREs were first developed (Caswell
1989), and are most often used to decompose effects on
asymptotic growth rates from deterministic models, but also
have been applied to net reproductive rates, invasion wave
speeds, operational sex ratios, stochastic growth rates, peri-
odic growth rates, life expectancy and measures of lifespan
inequality (Caswell 2010). Our goal here is to develop and
apply LTRE analysis to a particular class of short-term tran-
sient population growth rates in variable environments.
Although common analyses of the stochastic growth rate

incorporate the effects of fluctuating vital rates and popula-
tion structure in variable environments, they rely on the
stochastic environment being stationary (e.g. Tuljapurkar
1990). Many contemporary environments, however, are not
stationary. For example, changes in climate, land-use, and
water-use are directional, creating ‘non-stationary’ environ-
ments for much of the world’s biota (Wolkovich et al. 2014).
Non-stationary environments keep populations in a perpet-

ual transient state because they never have a chance to con-
verge to a stable population structure (Hastings 2004;
Wolkovich et al. 2014). Recent studies of transient dynamics
have produced measures of the amplification of isolated per-
turbations (e.g. Neubert & Caswell 1997; Verdy & Caswell
2008; Stott et al. 2011; Iles et al. 2016) and general methods
for the sensitivity analysis of transient dynamics (Caswell
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2007; Caswell & S�anchez Gassen 2015), but retrospective
analyses of transient dynamics have yet to be developed.
To improve our understanding of structured population

dynamics in changing environments, we present a series of
LTRE analyses that decompose transient population growth
rates into contributions from vital rates and population struc-
ture in any type of time-variant environment (stochasticity is
one case, but others include trends, periodicity and regime
shifts). Although it is a slight misnomer because there are
many other possibilities for LTRE analysis of transient popu-
lation dynamics, for simplicity we will call these ‘transient
LTREs’. We then implement our transient LTREs in a theo-
retical framework inspired by the demographic buffering
hypothesis, which predicts that because of the deleterious
impact temporal variability in vital rates can have on fitness,
such variability should decrease with increasing elasticity of
population growth rate to the vital rate in question (e.g. Gail-
lard & Yoccoz 2003). Corresponding to this prediction,
inverse relationships between prospective elasticities and retro-
spective vital rate contributions to variation in population
growth rates have been found in birds (Sæther & Bakke 2000;
Koons et al. 2014), large mammals (Gaillard et al. 2000), and
some plants (Zuidema et al. 2007), presumably because natu-
ral selection has buffered vital rates with the greatest potential
to affect fitness against environmental variation.
The aforementioned patterns were nevertheless based on

analyses of asymptotic population growth rates associated
with long-term stability of population structure. Using tran-
sient LTRE analyses, we relax the need for such applications
and reveal gaps in our current understanding of the relation-
ship between life-history and population dynamics that will
need revision when near-term inference is desired in time-vary-
ing environments. In addition, we discuss how our transient
LTREs can be applied to an array of other problems in ecol-
ogy and conservation.

THE POPULATION MODEL AND DEMOGRAPHIC

OUTCOMES

Throughout, we use the time-variant population model,

ntþ1 ¼ Atnt ð1Þ
where nt is a vector containing j components of structured
abundance n, and At is a projection matrix containing the
vital rates at time t. With a focus on time-varying environ-
ments, LTRE analysis has been used to decompose vital rate
contributions to sequential changes in asymptotic growth
rates (k1) associated with each At (e.g. Oli & Armitage 2004),
and more commonly, the variance of k1 over time (reviewed
by Bassar et al. 2010). But, a focus on k1 obscures the man-
ner in which structured abundance nt acts on At (see eqn 1)
to determine realised rates of growth in time-varying environ-
ments:

krealised;t ¼
P

j nj;tþ1P
j nj;t

¼ Ntþ1

Nt
¼ jAtntj jj

jntj jj ð2Þ

where || || denotes the sum of (absolute value) entries in a vec-
tor. More recently, LTRE analysis has been extended to the

stochastic growth rate, defined as the long-run average of
logged krealised,t:

log ks ¼ lim
T!1

1

T

XT�1

t¼0

log krealised;t ð3Þ

which embraces the dynamic feedback between nt and At in a
time-varying environment (Caswell 2010; Davison et al. 2010).
Existence of an asymptotic limit for log ks, however, depends
on the stochastic environment being stationary so that popu-
lation structure eventually has a stable mean and variance
(Cohen 1979).
In the near-term and in non-stationary environments, tran-

sient demographic outcomes will be of greater interest. For
example, following a management intervention or environ-
mental perturbation of particular interest, one might be inter-
ested in the change in krealised,t between successive time steps,
locations, or phenotypes (Dkrealised). Temporal variability of
krealised,t, var(krealised,t), is also of concern because occurrences
of krealised;t � 1 and krealised;t � 1 lead to large declines and
spikes in Nt+1 that can, respectively, predispose populations
to extinction or create problems for sustainable management.
In such cases, decomposing change or variance in krealised,t,
not k1 (Fig. 1A–D), will reveal which demographic pathways
contribute most to actual change or variance in near-term fit-
ness and population growth (Coulson et al. 2005).
The impact of non-stationary environmental change on the

mean rate of population growth over time is also of concern
in ecology and conservation (Gotelli & Ellison 2006), as well
as microevolutionary studies that seek to understand the dri-
vers of change in mean fitness between one generation and the
next (Lande 2007). The average rate of population growth
over a short to moderate time period T is measured as the
geometric mean of krealised,t (see Fig. 1E):

kg ¼
YT�1

t¼0

krealised;t

 !1=T

; logkg ¼ 1

T

XT�1

t¼0

log krealised;t ð4Þ

In non-stationary environments, log kg is transient and dif-
ferent than log ks because of perpetual instability in popula-
tion structure that never approaches a stationary distribution
(see Hunter et al. 2010 for an application).

TRANSIENT LTRES FOR TIME-VARYING

ENVIRONMENTS

We now develop LTRE analyses for each of the transient
demographic outcomes described above. To decompose past
var(krealised,t), we use methods derived from the definition of
variance for a linear combination of variables (e.g. Caswell
2001 ch. 10). Without affecting the measurement of krealised,t,
we normalise all nt to sum to one in order to avoid issues with
numerical computation (denoted n̂t). We then place each
parameter comprising the elements of At (i.e. lower level vital
rates) and each component of n̂t into a vector Θt, and calcu-
late the sensitivity of krealised,t to change in each underlying
demographic parameter (@krealised,t/@hi,t) using either symbolic
(see Appendix S1) or matrix calculus (see Caswell 2007).
These sensitivities are then used along with covariance among
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all elements of Θt to obtain the first-order approximation of
variation in krealised,t,

varðkrealised;tÞ �
X
i

X
j

covðhi;t; hj;tÞokrealised;tohi;t

okrealised;t
ohj;t

����
hij

ð5Þ

where the sensitivities are evaluated at the mean of Θt across
a realised (or simulated) time series. Each term in eqn 5 is the
contribution to variance in krealised,t from the covariance
among each pair of parameters (which includes population
structure and vital rates). A measure of the contribution of
variation in each hi to varðkrealised;tÞ is obtained by summing
over the covariances (Horvitz et al. 1997):

vhi �
X
j

covðhi;t; hj;tÞokrealised;tohi;t

okrealised;t
ohj;t

����
hij

ð6Þ

The magnitude of vhi may be small because krealised,t is insen-
sitive to changes in hi,t, because hi exhibits little variability over
time, or because negative co-variation with other hj nullifies its
direct effect. The transient LTRE decomposition of
varðkrealised;tÞ in eqns 5 and 6 is different from traditional

LTRE analysis of asymptotic growth rates (k1) associated with
the matrices At in that it analyses the actual transient growth,
krealised,t, occurring from t to t + 1. A transient analysis reveals
how strongly fluctuations in population growth rate have been
driven by the direct effects of each vital rate, each component
of population structure, and sums of vhi across parameters of
interest. The transient LTRE decomposition of Dkrealised is
extremely similar to that for varðkrealised;tÞ in eqns 5 and 6, and
thus we provide it in Appendix S1.
To develop an LTRE decomposition of demographic contri-

butions to the difference in mean population growth rates
between one period of time (1) and another (2),
log kð2Þg � logkð1Þg ¼ D log kg, we adopted a format similar to
eqn 1 in Davison et al. (2010) for LTRE analysis of log ks.
Like the difference in log ks between populations, transient
Dlog kg between two periods of time for a single population
depends on change in the temporal mean and standard devia-
tion of each vital rate between time periods, and potentially
changes in higher statistical moments (not considered here,
but see the discussion). As in any LTRE analysis, the contri-
bution of realised change in these vital rate moments to Dlog
kg will also depend on the sensitivity of the time-averaged
growth rate to proportional perturbations in the vital rate
moments (i.e. elasticities, which are used instead of unit per-
turbations because of working on the log scale).
Different from elasticities for the long-term stochastic

growth rate, those for kg must account for non-stationary
population structure, which can be attained using the ‘real-
time elasticities’ developed by Haridas et al. (2009). These
include eAi;t, the real-time elasticity of krealised,t to perturbation
in vital rate i at time t while holding population structure
fixed at realised values, and of key importance, en̂ti , the elastic-
ity of krealised,t to change in population structure at time t
resulting from perturbations to vital rate i at all previous time
steps. The perturbations can be implemented in ways that
change the temporal mean (l) of a vital rate or its standard
deviation (r). By iterating the calculations for eAi;t and en̂ti
across all t in time period T and taking the finite limit, one
attains eAi and en̂i (t sub- and super-scripts have been
dropped), which respectively represent the elasticity of kg to
change in vital rate i while ignoring the effect of perturbations
on population structure, and that to change in population
structure while ignoring the direct effect of perturbations in
vital rate i. Although eAi and en̂i converge asymptotically to
elasticities of the long-term stochastic growth rate in a station-
ary environment, they can be notably different when popula-
tion structure is not stationary (Fig. 1 in Haridas et al. 2009;
Haridas & Gerber 2010). By evaluating the aforementioned
elasticities for a reference population defined by per time step
means of Hð1Þ

t and Hð2Þ
t (where time periods 1 and 2 are of

equal duration; see Appendix S1), the LTRE for transient
Dlog kg can be approximated as:

D logkg �
X
i

log lð2Þi � log lð1Þi

� �
eAli þ en̂li

� �

þ
X
i

logrð2Þ
i � logrð1Þ

i

� �
eAri

þ en̂ri

� � ð7Þ

where li denotes the mean of vital rate i over a given time
period and ri the standard deviation describing temporal

Figure 1 A roadmap to demographic outcomes in the paper. In the top

panel is a trajectory of abundance for an example life history described by

eqn 9 with SJ ¼ 0:15, SA ¼ 0:85, q suitable for population growth (4.03),

and c = 0.5 in a medium variance environment, the associated rates of

realised population growth between each time step (krealised,t, middle

panel), and the very different asymptotic growth rates associated with the

vital rates at each time step (k1,t, bottom panel). To retrospectively

decompose the dynamics of this focal population, one could use the

transient LTRE from eqn 6 to measure the direct contributions of vital

rates and components of population structure to the variance of krealised,t
over time (A) instead of the often-used LTRE analysis of vital rate

contributions to the variance of asymptotic k1,t (B). Past researchers have
also examined the contributions of vital rates to sequential changes in k1,t
over time (Dk1, C). By not accounting for the interplay between population

structure and vital rates, however, analyses of k1,t do not capture the

correct magnitude of change in abundance, and may even analyse the

wrong direction of change (e.g. compare C to D). Instead, one can now

use eqn S1.4 to examine the contributions of each demographic parameter

to change in krealised,t at particular points in time (Dkrealised, D). One can

also decompose the drivers of difference in the geometric average of

growth rates (kg = 1.16) between one period of time (as shown in E) and

either a prior or subsequent time period of equal duration (eqn 8).
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variability. The total contribution of vital rate i to transient
Dlog kg can thus be represented as a function of four unique
contributions:

(1) the direct effect of a difference between lð2Þi and lð1Þi ,
(2) the indirect effect of lð2Þi � lð1Þi channelled through popu-

lation structure,
(3) the direct effect of a difference between rð2Þ

i and rð1Þ
i , and

(4) the indirect effect of rð2Þ
i � rð1Þ

i channelled through
perturbed population structure,which collectively appear as:

vhi � D log li � eAli þ D logli � en̂li þ D logri � eAri
þ D logri

� en̂ri
ð8Þ

Additional information about the steps for implementing
eqns 5–8 is provided in Appendix S1, and pseudo code with
annotated R code is provided in Appendix S2.

COMPARISON OF LTRES ACROSS LIFE HISTORIES

To compare the inference attained from LTRE analyses
across life-history strategies, we simulated life histories in
time-varying environments using a version of the simple
two-stage matrix population model presented in Neubert &
Caswell (2000),

At ¼ SJ;tð1� cÞ qt
SJ;tc SA;t

� �
ð9Þ

where St represents per time step survival for either juvenile
(J) or adult (A) stage classes, c denotes the fraction of surviv-
ing juveniles that mature to become adults during each time
step, and qt denotes time-specific recruitment of offspring into
the juvenile stage (the number of juveniles at t + 1 produced
by an adult at t; the lower level processes comprising qt will
differ widely among species). This versatile model can describe
a wide array of life histories. For example, semelparity is
approached as SA,t?0, and iteroparity increases as SA,t?1.
Likewise, delayed development is enhanced as c approaches
(but is not allowed to reach) 0, and a precocial life history is
attained as c?1 (Neubert & Caswell 2000).

Comparative LTRE analyses of variability in population growth

rates

We next sought to examine transient LTRE contributions of
vital rates and components of population structure to tempo-
ral variation in krealised,t (eqn 6) across a wide array of life-his-
tory strategies, and for heuristic purposes, to compare results
from this method to those produced by a traditional LTRE
analysis of variance in asymptotic growth rates (k1) associated
with each At (such calculations necessarily ignore the effects
of population structure). To denote vital rate values in mean
environmental conditions, we used eqn 9 to generate life his-
tories by creating a grid of all possible combinations of SJ

and SA, with each ranging from 0.05 to 0.95 (in steps of 0.05).
We fixed c at either 0.2, 0.5 or 0.8, and solved for q such that
each life history had asymptotic k1 = 1 in mean environmental
conditions. To allow for reasonable comparison with the

asymptotic LTRE, we generated stationary temporal variation
in SJ,t, SA,t and qt for each life history in a manner that was
consistent with the demographic buffering hypothesis. To do
so, we measured the elasticities of k1 for each life history to
proportional change in SJ, SA, and q, one at a time, denoted
as ei. Next, we scaled the simulated temporal variance in SJ,t,
SA,t and qt by defining a proportional measure of buffering:
si ¼ ð1� eiÞ=maxðeSJ

; eSA
; eqÞ, using the fact that all ei were

< 1 for our simulated life histories. Thus, si is smallest (and
most buffered) for the vital rate with largest elasticity and vice
versa. For each vital rate, we simulated low
(si 9 0.25 9 CVmax), medium (si 9 0.50 9 CVmax) and high
temporal variance scenarios (si 9 0.75 9 CVmax), where
CVmax pertains to the maximum possible coefficient of varia-
tion for a probability (Morris & Doak 2004) or a set value of
one for qt. To test whether our results were dependent on
these choices, we also considered scenarios with si = 1 for
each vital rate, which implies no demographic buffering.
After generating random values of SJ,t and SA,t from indepen-

dent beta distributions, and random values of qt from a gamma
distribution for each life history, we projected population
dynamics for 25 time steps using eqn 1; a length of time that
could be considered not only as a long-term ecological study
(Clutton-Brock & Sheldon 2010) but also one where the distri-
bution of population structure could not have had enough time
to converge to its stationary distribution. To be consistent
across life histories and conservative in our comparisons to
asymptotic LTRE analyses of temporal variance in k1, we set
initial conditions for each projection (n0) to the stable stage dis-
tribution associated with respective values of SJ,t, SA,t, c and qt
at the initial time step for each life history. For all projections,
we measured the transient LTRE contributions of variation in
each hi to varðkrealised;tÞ across the duration of each 25 time step
simulation using eqn 6. We also measured the asymptotic
LTRE contributions of each vital rate to varðk1Þ, and measured
any approximation errors in

P
i vhi associated with each LTRE

relative to actual varðkrealised;tÞ. We note that although the
LTRE analysis of asymptotic k1 is not designed to examine
varðkrealised;tÞ, many apply it in hopes of approximating the
demographic parameters that contribute most to realised fluctu-
ations in growth rates of wild populations (Bassar et al. 2010).
Thus, we feel that our measure of approximation error
described above will help direct future research to the LTRE
that is most appropriate to the objective.

Results
Because of strong qualitative similarity in the results across
simulated levels of maturation probability (c) and environ-
mental variance, we focus primarily on those pertaining to life
histories with c = 0.5 and medium levels of variability in the
vital rates that emulated demographic buffering (see
Appendix S3 for results from other simulation scenarios and
Appendix S4 for those that did not emulate demographic
buffering, si = 1). Across life histories, we found that the con-
tribution of population structure to varðkrealised;tÞ was greatest
in those with low SJ and low SA (e.g. nearly annual plants
and invertebrates), which curtailed in a diagonal fashion
across the array towards life histories with high SJ and SA

(e.g. large mammals) (Fig. 2A, Appendix S3.1). In fact,
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fluctuations in population structure made the largest contribu-
tion to varðkrealised;tÞ in life histories with low to moderate SJ

and low SA, but also across a larger range of SA when SJ was
at its lowest (Fig. 2B, Appendix S3.2). For many life histories
with moderate longevity and parity (which pertains to many
species), as well as the nearly semelparous life histories with
low SA but high SJ (e.g. cicadas), fluctuations in offspring
recruitment (qt) made the largest contribution to
varðkrealised;tÞ. To the contrary, fluctuations in either juvenile
or adult survival made the largest contribution in some long-
lived and highly iteroparous life histories (upper right corners
in Fig. 2B, Appendix S3.2). These life-history patterns were
even more marked in the life histories without demographic
buffering (Appendix S4.1B), indicating that the patterns are
not unique to the demographic buffering hypothesis.
Corresponding results from asymptotic LTRE analyses of

k1 were markedly different than those presented above for
transient LTRE analyses of krealised,t (Fig. 2C, Appendices
S3.3, S4.1C), indicating the asymptotic LTRE may provide
poor insight into the drivers of actual population growth rates
in time-varying environments. The mean ratio of approxima-

tion error on the log scale, log varðkrealised;tÞ
�P

i

vhi;t

� 	
, across

all life histories was indeed high, increased with environmental
variability (0.75, 0.86 and 0.95 in the low, medium and high
variance scenarios relative to an error-free value of 0), and the
bias was consistently in the direction where

P
i

vhi was low

compared to varðkrealised;tÞ. This indicates that the analysis of
asymptotic growth rates does not fully capture the magnitude
of variance in realised growth rates. Moreover, there were dis-
tinct life-history patterns in the error, which tended to be
strongest in life histories where fluctuating population struc-
ture made large contributions to actual varðkrealised;tÞ, as well
as those with extremely low SJ and extremely high SA (e.g.
trees and long-lived vertebrates with indeterminate growth),
for which fluctuating population structure made moderate
contributions (Figs. 2A, 3A, Appendices S3.4, S4.2A). This is
not surprising because the variance of k1 is by definition unaf-
fected by fluctuating population structure, an important
reminder that asymptotic LTRE analyses of k1 overlook these
important effects that occur in time-variant environments.
The approximation error for transient LTREs across all life

histories, on the other hand, was only 0.01, 0.04 and 0.06 in
the low-, medium- and high-variance scenarios. The nominal
levels of error were moreover distributed in a near-symmetric
fashion in low and high directions across life histories (i.e. no
life-history patterns in the error; Fig. 3B, Appendices S3.5,
S4.2B). Thus, the transient LTRE provided accurate approxi-
mations of how vital rates and population structure contribute
to varðkrealised;tÞ in time-variant environments.

Comparative LTRE analyses in non-stationary environments

Given that we have established transient LTREs as being more
appropriate for decomposing variability of realised population
growth rates in time-variant environments than commonly used
asymptotic LTREs, we now turn attention to the comparison
of transient LTREs across life histories in non-stationary

environments. Because there are near-infinite ways in which
demography can respond to non-stationary environmental
change, it is difficult to study population dynamics in such envi-
ronments from a theoretical angle. For example, all vital rates
might respond to environmental change in the same direction,
only a subset might respond, or vital rates might respond in
opposite directions (e.g. because of trade-offs). In addition,
non-stationary environmental change might affect the means of
vital rates, their variances, or both, and a large array of other
possibilities could occur (Wolkovich et al. 2014).

Figure 2 The proportional contribution of population structure (PS) to

varðkrealised;tÞ in medium variance environments across life histories with

c = 0.5 according to the transient LTRE (eqn 6), for which the

complement represents the proportional contribution from all vital rates

combined (panel A). Also shown in panel B are the demographic

parameters that contributed most to varðkrealised;tÞ across the same array

of life histories (qt = light blue, SJ,t = dark blue, SA,t = light green, and

n̂A;t = salmon; n̂J;t never made the largest contribution for any life

history), which differed greatly from the vital rates that contributed most

to varðk1Þ according to the asymptotic LTRE (panel C).
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To provide just a few examples of how transient LTRE
inference varies across life histories in non-stationary environ-
ments, we created a trend parameter (bVR) for non-stationary
change in qt, SJ,t, or SA,t from eqn 9, one at a time:

VRt ¼ link�1 aVR þ bVR � tþ eVR;t


 � ð10Þ
where t was projected 25 time steps past the stationary simu-
lations described in the sub-section above and mapped to the
U[0,1] space for multiplication with bVR in eqn 10, aVR forced
the vital rate to have the same mean as in the stationary simu-
lation when mapped t = 0 and ɛVR,t = 0, and bVR was chosen
so that the mean would decline by 25% on the real parameter
scale by the end of the projection. We simulated values of
ɛVR,t using a normal distribution with a mean of zero and a
variance that was 25% of that used in the stationary simula-
tions because, in addition to ɛVR,t, the bVR trend also affects
the net variance of a vital rate across non-stationary condi-
tions. A logit link was used for survival probabilities and a
log link was used for qt. When not affected by the non-sta-
tionary process in eqn 10, we allowed the other vital rates to
fluctuate in a stationary manner as described in the previous
sub-section. We note that one could modify eqn 10 to affect

multiple vital rates at the same time, or accommodate trends
in ɛVR,t instead of the central tendency. Nonlinear equations
would be needed to model environmental shifts out of equilib-
rium conditions and bifurcations into alternative states.
Given our simple trend scenarios, we used a transient

LTRE to measure the contributions of each demographic
parameter to sequential changes in krealised,t (i.e. sequential
Dkrealised) over the duration of non-stationary simulations for
life histories near each corner of our array (each with c = 0.5;
see Appendix S6). But below, we focus on vital rate contribu-
tions to the difference in log kg between periods of non-sta-
tionary change in each focal vital rate (qt, SJ,t, or SA,t) and
the preceding stationary period using eqn 8.

Results
Similar to our findings for transient contributions of demo-
graphic parameters to varðkrealised;tÞ in stationary environments,
we found that the Dlog kg resulting from non-stationary envi-
ronmental change in life histories with low SJ (e.g. species that
invest in offspring quantity rather than quality) was predomi-
nantly driven by indirect effects of vital rates channelled
through perturbations to population structure (n̂; Fig. 4). These
impacts were largely manifested through changes in the mean
(l) of offspring recruitment (Fig. 4 panel A) or juvenile survival
(panel C).
As longevity and parity of the life history increased, however,

the direct effect of vital rates (A) contributed more to Dlog kg
than the indirect effects. Moreover, the vital rate that experi-
enced progressive non-stationary change in its mean over time
tended to make the greatest contribution (compare bar clusters
in Fig. S5), which often resulted in a greater vital rate contribu-
tion to Dlog kg than that to varðkrealised;tÞ in the stationary envi-
ronments (Fig. 2). These patterns were especially pronounced
in the life history with highest longevity and parity (Fig. 4 panel
B), for which population dynamics can be particularly respon-
sive to even small changes in adult survival.
In all life histories, the direct and indirect contributions of

change in vital rate standard deviations to Dlog kg were small
(Fig. 4), but could have been greater had we focused on non-
stationary changes in variability over time instead of the central
tendency. Overall, the logged approximation errors associated
with the transient LTRE for Dlog kg were quite small in each of
the non-stationary scenarios we considered (respectively
� 0.03, 0.09, 0.13; � 0.01, 0.03, � 0.02; 0.01, 0.24, � 0.07; and
0.01, 0.06, 0.07 for life-history panels A-D in Fig. S5), but this
will not necessarily be the case in all settings.

DISCUSSION

Despite the maturity of population biology, there is still much
to be learned about the behaviour of population dynamics in
changing environments. For example, comparative studies of
demography have inspired multiple disciplines, ranging from
the study of trait evolution (e.g. Adler et al. 2014) to directing
conservation and management of poorly studied species based
on demographic life-history patterns (e.g. Sæther & Bakke
2000). Until recently, however, the most commonly used tools
for retrospectively examining ecological and evolutionary
dynamics have been based on asymptotic growth rates (Bassar

Figure 3 The approximation error in summed contributions of vital rates

to varðk1Þ measured with asymptotic LTREs relative to variance in

realised population growth rates: log varðkobs;tÞ=
P
i

vhi

� 	
(AS; panel A),

which exhibited much more error and distinctive life-history patterns in

the error relative to the more appropriate transient LTRE method from

eqn 6 (TR; panel B). Results are shown across life histories with c = 0.5

in medium variance environments.
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et al. 2010). Our transient LTREs overcome the need for such
applications, and can be used to measure the dual contribu-
tions of vital rates and population structure to population
dynamics in the observed environments.
By implementing transient LTREs across a wide array of

simulated life histories, we have provided a ‘tree of life’ per-
spective into the demographic drivers of population dynamics
in time-variant environments, and identified where current
knowledge may be incorrect because of reliance on applica-
tions that were not meant for such conditions. Consistent with
comparative studies of prospective population dynamics in
time-varying environments (Gamelon et al. 2015), our results
would suggest that it is most critical to account for fluctuating
population structure when analysing population dynamics and
evolutionary processes of the many species that do not possess
the luxury of extremely high adult survival. Unstable popula-
tion structure has the potential to strongly affect population
dynamics in long-lived species (Koons et al. 2005, 2006), but
negative co-variation with the vital rates tends to nullify its
impact in a time-varying environment (Gamelon et al. 2015).
The strong life-history patterns in our transient LTRE

results additionally suggest that current conservation para-
digms based on demographic patterns across life histories and
the demographic buffering hypothesis of life-history evolution
need to be revisited because of reliance on asymptotic analyses
and stability of population structure. Our results offer initial

insight into the ways in which vital rates and components of
population structure might contribute to temporal variation in
realised population growth rates across species. Yet, our ideas
need to be tested with empirical data and with models allow-
ing for greater life cycle structure than our simple two-stage
model. Where empirical data are (or become) available, our
new transient LTREs could readily be used to reasses the
demographic drivers of population dynamics across species
and life-history strategies.
As ecologists strive to become better at forecasting

(Petchey et al. 2015), it will be necessary to understand the
mechanisms responsible for change in population dynamics
and mean fitness in the non-stationary environments that are
so prevalent during the Anthropocene (Wolkovich et al.
2014). Using transient LTREs for Dlog kg, we found that,
similar to the results for stationary variation in vital rates
over time (Fig. 2), there are life-history patterns in the demo-
graphic drivers of Dlog kg between a stationary and subse-
quent non-stationary environment (Fig. 4). But, the life-
history patterns can be weak relative to the effects induced
by the particular vital rate that changes in a non-stationary
manner (Fig. S5), indicating that (1) it will often be inappro-
priate to use stationary methods for addressing the impact of
climate change on population performance (Gaillard et al.
2013), an inherently non-stationary issue, and (2) that given
spatial heterogeneity in the way in which land-use, water-use

Figure 4 The relative contribution (y-axis: absðvhi;x Þ
�P

i

P
x
absðvhi;x Þ) of each vital rate (x-axis: hi) to the difference in log kg between the time period with

non-stationary environmental change in SA,t and the preceding period with stationary variability, partitioned according to four effects (x): the direct effect

(dark shading at bottom of stacked bars) of change in the mean (l) or standard deviation (r) of a vital rate, or the respective indirect effects channelled

through perturbed population structure (light shading at top of stacked bars). Panels A, B, C and D, respectively, represent the life histories near each

corner of our array with SA ¼ 0:85 and SJ ¼ 0:15, SA ¼ 0:85 and SJ ¼ 0:85, SA ¼ 0:15 and SJ ¼ 0:15, SA ¼ 0:15 and SJ ¼ 0:85. See Appendix S5 for

results pertaining to non-stationary change in each of the other vital rates.
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and climate change affect the demography of species with
different life histories, it will be challenging to make general-
isable predictions about the future fates of species. It might
thus be time to shift current enamor with climate envelope
predictions based on biogeographic patterns to more mecha-
nistic studies of demography over space and time (e.g.
Merow et al. 2014).
Future research should improve upon our transient LTRE

for Dlog kg by extending it to higher statistical moments,
highlight the influence of correlation among vital rates (Davi-
son et al. 2013), and develop second derivatives of the
stochastic growth rate (and short-term analogue) with respect
to change in underlying vital rates and population structure.
Because time series of vital rates and population structure are
needed to implement the transient LTREs, one might think
that our new methods can only be applied to the limited situa-
tions where complete censuses can be achieved (e.g. Coulson
et al. 2005). Bayesian integrated population models can never-
theless be used to relax this constraint by statistically leverag-
ing information across available demographic data and
simultaneously estimate vital rates, population structure, total
abundance and realised population growth rates, even when
some data are missing or indirectly related to latent parame-
ters of interest (K�ery & Schaub 2012). Estimates of statistical
uncertainty in demographic outcomes provided by such mod-
els (Schaub & Abadi 2011) can additionally be used to decide
when second-order extensions of the transient LTREs should
be pursued.
By acknowledging the manner in which population dynam-

ics actually operate in time-variant environments (eqn 1), our
transient LTREs coupled with integrated population models
will allow for more accurate insight into the relative contribu-
tions of intrinsic (e.g. density dependence, a special type of
non-stationarity) and extrinsic (e.g. climate) mechanisms that
affect population growth and mean fitness, as channelled
through vital rates and population structure. These new tools
will in turn help researchers improve the explanatory power
of models used to forecast future dynamics amidst global
change (Gotelli & Ellison 2006).
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