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Abstract
Climate change is predicted to expand the ice-free season in western Hudson Bay and

when it grows to 180 days, 28–48% of adult male polar bears are projected to starve unless

nutritional deficits can be offset by foods consumed on land. We updated a dynamic energy

budget model developed by Molnar et al. to allow influx of additional energy from novel ter-

restrial foods (lesser snow geese, eggs, caribou) that polar bears currently consume as part

of a mixed diet while on land. We calculated the units of each prey, alone and in combina-

tion, needed to alleviate these lethal energy deficits under conditions of resting or limited

movement (2 km d-1) prior to starvation. We further considered the total energy available

from each sex and age class of each animal prey over the period they would overlap land-

bound polar bears and calculated the maximum number of starving adult males that could

be sustained on each food during the ice-free season. Our results suggest that the net ener-

gy from land-based food, after subtracting costs of limited movement to obtain it, could elim-

inate all projected nutritional deficits of starving adult male polar bears and likely other

demographic groups as well. The hunting tactics employed, success rates as well as behav-

ior and abundance of each prey will determine the realized energetic values for individual

polar bears. Although climate change may cause a phenological mismatch between polar

bears and their historical ice-based prey, it may simultaneously yield a new match with cer-

tain land-based foods. If polar bears can transition their foraging behavior to effectively ex-

ploit these resources, predictions for starvation-related mortality may be overestimated for

western Hudson Bay. We also discuss potential complications with stable-carbon isotope

studies to evaluate utilization of land-based foods by polar bears including metabolic effects

of capture-related stress and consuming a mixed diet.
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Introduction
Climate change is causing the sea ice in arctic regions to melt earlier in spring (e.g., [1,2]), lead-
ing to a trophic mismatch between polar bears and their primary spring prey, the pups of
ringed seals (Phoca hispida) [3]. The bears acquire the majority of their annual energy reserves
from hunting seals on the ice, especially during the spring when they capture pups in their
snow lairs [4]. In western Hudson Bay, polar bears have historically relied on the energy from
hunting these seal pups to sustain them through the ice-free period on land until the ice re-
forms in fall [5,6]. Assuming that polar bear survival is dependent on access to seals during this
critical period, many predict declines in polar bear survival and abundance coincident with the
advance of sea ice breakup as polar bears will be forced ashore with smaller fat reserves for lon-
ger periods (e.g., [3,7,8]).

Molnár et al. [8] used a mechanistic approach to predict polar bear survival that involved es-
tablishing a relationship between physical measures (size and structure) and body composition
to determine how energy stores are incrementally depleted as polar bears spend longer periods
on land during the ice-free season. The model was parameterized with measurements of cap-
tured polar bears in western Hudson Bay and daily maintenance costs that are based on past
patterns of average daily weight loss experienced by the bears until they returned to the ice
[9,10]. Molnár et al. [8] used the model to predict the proportions of adult males that would
starve to death as the ice-free season expands to 180 days, a scenario predicted as ice conditions
worsen in response to climate change. The model takes into account somatic maintenance
costs and the effects of limited movements (2 km d-1) but does not allow for energy influx into
the system from consuming additional food on land.

Molnár et al. [8] justified not including a food intake parameter with the assertion that there
is no “energetically meaningful” food available for polar bears to eat. They cite Hobson et al.
[11] who found that polar bears only utilize fat accumulated from hunting seals prior to com-
ing ashore for energy based on “marine” (as opposed to “terrestrial”) stable carbon isotope sig-
natures in exhaled CO2 of polar bears captured on land. Because energy utilization pathways
can change under conditions of extreme stress (which polar bears may experience when cap-
tured [12]) and since land-based foods, such as geese and marine algae, can possess a marine
signature [13,14,15] their assertions may not be valid.

Polar bears are opportunists (e.g., [16,17]) and have been documented consuming various
types and combinations of land-based food since the earliest natural history records (e.g.,
[18,19, 20,21]). While subadults and family groups have been most often observed pursuing
terrestrial animal prey [22,23] and eating plants such as berries [16], the spatial distribution of
polar bear scats and personal observations (L.J. Gormezano and R.F. Rockwell), suggest that at
least some adult males currently consume plants and animals during the ice-free period [21].
In the absence of genetic analyses, the proportion of adult males using land-based resources is
not yet known, but it is reasonably assumed that if such foraging occurs and yields some ener-
getic benefit it will increase in frequency (e.g., through social learning) as the needs intensify
[24,25].

In this paper, we reconstruct Molnár et al.’s [8] model to predict future survival of adult
male polar bears as the ice-free season expands to 180 days, but consider a scenario in which
nutritionally stressed bears seek additional terrestrial food when available. Because polar bears
have always consumed food on land and such feeding is already incorporated into daily weight
loss patterns used to build the original model, we only include novel animal foods (caribou,
Rangifer tarandus, eggs and Lesser snow geese, hereafter snow geese or LSGO, Chen caerules-
cens caerulescens) that have more recently been identified in the land-based diet [13]. The re-
cent population increases of snow geese and caribou (i.e., 1980s, 1990s) have made them more
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available to arriving bears, which coincides with the onset of advance in spring ice-breakup
[13]. Arriving polar bears now spatially overlap nesting snow goose colonies (see Figure 1 in
[26]) as well as local caribou herds which extend across the Cape Churchill Peninsula, south to
the Nelson River [13]. Furthermore, as polar bears come ashore earlier they will overlap more
of both the incubation periods of snow geese and calving of caribou, potentially creating a new
trophic match on land to compensate for the growing mismatch with seals on the earlier
disappearing ice.

To evaluate the potential effectiveness of each food toward fulfilling daily energy require-
ments of adult males projected to starve while on land for 180 days according to Molnár et al.
[8], we address these questions:

1. How many individual or combined units of each animal sex and age class (e.g., clutch of
eggs, caribou calves) would need to be consumed to prevent starvation in each adult male
polar bear?

2. What is the total energy potentially available to polar bears each day from snow geese, eggs
and caribou?

3. How many starving adult male polar bears could be supported by each food source?

We discuss the limitations of our derived energy calculations in light of the absence of rigorous
data on certain aspects of polar bear foraging behavior such as locomotive costs associated with
different foraging techniques.

Methods

Polar bear energy budget during the ice-free season
We used a 2 component, dynamic energy budget model [27] developed by Molnár et al. [8] to
track daily energy expenditures and potential deficits that polar bears could accrue while on
land as the ice-free season expands. Daily expenditures were presented as the change in storage
energy utilizations for somatic maintenance and movement over time. Parameters such as met-
abolic rate and fat reserves were modeled with straight-line body length and total body mass of
different sex and age classes of polar bears captured on land in western and southern Hudson
Bay. Based on these relationships, daily estimates of structural volume and energy stores were
generated and used to predict critical thresholds beyond which starvation occurred [8].

Application of this model is limited to adult male polar bears (� 7 years old) during the ice-
free season, so other draws on storage energy, such as thermoregulation, structural growth and
reproduction are not accounted for. Because Molnár et al. [8] assume that there is no influx of
energy from foods consumed during this period, the general model (Eq (2) in [8] changes solely
as a function of daily expenditures, including somatic maintenance and movement:

dE
dt

¼
�mLBM
|fflfflfflfflffl{zfflfflfflfflffl}

�ðaMb þ cMdvÞ
|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}

Somatic maintenance Movement

ð1Þ

where somatic maintenance is assumed to be proportional to the costs associated with mainte-
nance of lean body mass (LBM) and the metabolic rate (m) is the energy required to maintain a
unit mass of lean tissue [10]. Movement costs were derived from an allometric equation de-
scribing how costs change as a function of total body mass,M [10]. The first component, pos-
tural costs, (aMb) describes metabolic costs associated with standing and the second, cMbv,
describes how energy consumption increases linearly as a function of velocity, v [28,29].
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As explained by Molnar et al. [10], Eq (1) can further be expanded and parameterized using
the body composition model:

dE
dt

¼ �mða�1ð1� φÞE þ rSTRkL
3Þ

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Somatic maintenance

�ðaða�1E þ rSTRkL
3Þb þ cða�1E þ rSTRkL

3Þdv
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Movement

ð2Þ

Where α represents the energy density of storage, φ is the proportion of storage mass that is fat
and ρSTRk is a constant to estimate structural mass from straight-line body length, L. Storage
energy, E, can be expressed as a function of total body mass and straight-line body length (Eq
(1) in [10]):

E ¼ aðM ¼ rSTRkL
3Þ ð3Þ

Following [10], body composition and maintenance parameters were estimated asm = 0.089
MJ kg-1 d-1, α = 19.50 MJ km-1, φ = 0.439, ρSTRk = 14.94 kg m-3 and movement parameters
were estimated as a = 0, c = 0.0214 MJ km-1 and d = 0.684 [30]. Parameter b is not reported but
we assume this is because a = 0, so postural costs must equal zero, regardless of the value of b.

Most adult males are reported to be inactive on land during the ice-free season [31], howev-
er, movement rates of approximately 2 km d-1 have been reported [32] in western Hudson Bay.
Molnár et al. [8] consider both scenarios, where v = 0 (i.e., somatic maintenance only) and
v = 2 km d-1 for calculations of energy costs. Also, they observed little variation in straight-line
body length among the adult males sampled, so a mean length (L = 2.34 m) was used in all cal-
culations. With initial energy stores, E0, the time to death by starvation was computed by nu-
merically integrating Eq (2) and solving for time T when E(T) = 0 [8]. Two ice-free season
threshold lengths were used to compare starvation rates among adult males during times of
contrasting climate conditions: 120 days, typical of the 1980s, and 180 days to represent poten-
tial future conditions as warming trends progress. Using measurements for 97 adult male polar
bears captured in 1989–1996, and assuming those sampled bears were representative of all
adult males in the western Hudson Bay population, Molnár et al. [8] estimated that approxi-
mately 3% died of starvation at the end of a 120-day period if resting and 6% if walking 2 km d-
1. As that period expands to 180 days, 28% and 48% would die of starvation if resting or walk-
ing, respectively. For sake of reference, adult males comprise approximately 25% (234 polar
bears) of the western Hudson Bay population (N = 935 in 2004) based on proportions captured
during darting operations once surveys were expanded to include all age and sex classes [33].

To reproduce their results, we computed energy density values (E/LBM) for sequential mass
values (in 1 kg intervals) using Eqs (2) and (3):

E
LBM

¼ aðM � rSTRkL
3Þ

ða�1ð1� φÞ�aðM � rSTRkL3Þ þ rSTRkL3Þ ð4Þ

and matched the mass values associated with the energy densities for 97 adult male polar bears
extracted from Figure 3 in Molnár et al. [8]. Using discrete numerical calculations, we repro-
duced the daily energy usages for each of the 97 adult male polar bears under scenarios of rest-
ing or walking and for 180 days. Under scenarios of resting and walking, we iteratively
calculated the daily energy required to prevent starvation by adding the somatic maintenance
and movement costs (v = 2) for the mass that the bear was on the day before energy stores
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reached zero. Movement costs were added to the new daily energy requirements regardless of
whether these bears had been “moving” prior to starving because movement would be neces-
sary to obtain food from that point forward. The daily energy requirements were summed
across all remaining days within the 180-day span for each starving bear (hereafter total energy
deficit) and ranked by total value. These data are illustrated by listing the number of starving
polar bears with total energy deficits in sequential 50,000 kcal groupings.

Food availability during a 180-day ice-free season
Although sea ice concentration and extent have delayed freeze-up in parts of Hudson Bay [2],
expansion of the ice-free season thus far has mainly been attributed to earlier breakup [1,7].
For this reason, we only consider an annual advance in spring sea-ice breakup to predict when
Hudson Bay would be ice-free for 180 days and thus when polar bears would be forced ashore
for that duration. We calculated this date following Rockwell and Gormezano [34] by linearly
projecting a 0.72 d yr-1 advance from the average breakup date observed in the 1980s (1980–
1989), when an ice-free period of 120 days was typical [8]. The year when this annual advance
resulted in a 60-day expansion of the ice-free period (180–120 = 60) was 2068.

To estimate snow goose arrival, breeding and molt during the 180-day ice-free season, we
projected the mean hatch date in 2068 based on a 0.16 d-1 yr-1 advance from 2008 (21 June)
[34]. Caribou are cued to initiate spring migration to the calving grounds based on day length
and studies in other caribou populations indicate that calving date has advanced little in re-
sponse to climate change [35]. We, therefore, used the 2013 estimated calving date, 1 June, for
energy calculations in 2068. For sake of simplicity, we used 2013 estimates of population size
for LSGO (71,068 nesting pairs) and caribou (minimum count of 3000) for energy calculations
in 2068.

Energy compensation to starving polar bears
Translating energy available into energy required to prevent starvation is difficult in a species
for which there is little information available on actual terrestrial foraging behaviors or the en-
ergetic costs and dynamics associated with those behaviors. In dealing with this uncertainty,
we make an initial attempt at integrating the energy available with energy needed by examining
maximum potentials and then computing the foraging efficiency that would be required for
the translation.

We tabulated the total energy that would be available from each food in 2068 as the ice-free
season expands to 180 days. We then compared these energy estimates to different deficit levels
that are projected for polar bears that will be susceptible to starvation (28% of resting and 48%
of walking bears) according to Molnár et al.’s [8] model. Total energy deficits for each starving
bear were ranked into 5th (highest energy requirements), 25th, 50th, 75th and 95th (lowest energy
requirements) percentiles with each computed from the average of all energy values falling
within 2.5 percentage points (above or below) each of the aforementioned percentiles. We then
calculated how many units of each food item (e.g., clutches of eggs, individual animals) could
maximally compensate for the total energy deficits of starving bears in each of the 5 energy
condition percentiles for bears that were either resting or walking 2 km d-1 prior to starvation
assuming only the added 2 km d-1 movement costs (and no additional energetic cost) to pro-
cure each food item. Also, because polar bears often consume different foods together [21], we
provide an example of potential combinations of foods, based on patterns observed in polar
bear scat, that together compensate for total energy deficits in each percentile for resting or
walking bears.
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Adult male polar bears have been observed pursuing and consuming each of the food items
discussed, which suggests that the behavior could become widespread through social learning
and energetic need [22,25]. For this reason, we also modeled the total number of starving adult
male polar bears that could be supported by each of the food items (eggs, LSGO, caribou) as
the ice-free season expanded to 180 days. For each day polar bears overlapped a food source,
the total available energy from each food (eggs, goslings, pre-hatch adult females, flightless
adults, calves, yearlings, cows, bulls) was tabulated. For this analysis, we only considered an
“average” year for gosling survival and used the minimum estimate of 3000 caribou in the
Churchill area (see “Computing the potential caloric values of land-based foods”). Using Mol-
nár et al.’s [8] proportions of 97 adult male polar bears that would starve in 180 days, we calcu-
lated the energy needed for somatic maintenance and movement costs at 2 km d-1 (whether or
not they had been walking previously) at the mass the day before they would starve (E(t) = 0).
Because most of the starving bears depleted their energy reserves at approximately the same
mass (�x = 191.93 kg, SD = 0.2512) the daily energy requirements (including both somatic and
movement costs) did not differ much between individuals so we used the mean value (4450.28
kcal d-1, SD = 5.37) in calculations. We divided the total energy value of each food item,
summed across days, by the mean daily energy deficit (4450.28 kcal) multiplied by the maxi-
mum number of days that a starving polar bear would need daily energy supplementation (122
days) to obtain the minimum number of adult male polar bears coming ashore susceptible to
starvation that could be supported by each food. This is a conservative estimate of supported
bears because individual bears depleted their energy reserves at various points within the
180-day span depending on their arrival mass. 122 days represents the longest period over
which males in the worst condition would need to supplementation (days 59 through 180); all
others would require food for shorter periods of time. In accordance with Molnar et al. [8], we
use the same distribution of arrival masses for calculations of adult male survival as were ob-
served during the 1980s and 1990s. The lack of procurement costs, other than those for move-
ment 2 km d-1, in calculations of daily energy requirements may lead to overestimation of the
number of bears supported by each food item so these estimates should be considered the
maximum limits.

Recreation of energy profiles for individual polar bears and other computations were com-
pleted using R 3.0.1 [36].

Computing the potential caloric values of land-based foods
Snow Geese. In 2006, the nesting population of snow geese on the Cape Churchill Penin-

sula (CCP) was estimated to be 48,885 pairs [34]. In response to management actions taken to
control the Mid-continent Population of snow geese, adult survival had been reduced since
1996 and the population was thought to be nearly stationary [37]. After 2006, however, adult
survival increased [38] and the population has again been growing at its pre-management rate
of λ = 1.05 to 1.06 (R.F. Rockwell, unpublished data). Because a complete inventory of the CCP
snow geese is not scheduled until 2016, we estimated the 2013 population size by projecting the
2006 value forward with a discrete time geometric growth using the midpoint of the population
growth estimate as 48,855 × 1.0557 = 71,068 pairs of nesting geese.

We used the fat and protein content of newly laid snow goose eggs estimated by Badzinski
et al. [39] and described the changes in caloric worth over the 24-day incubation period from
patterns of decline as the yolk content is consumed by the embryo [40,41]. We projected a
peak hatch date of 20 June for 2013 based on 0.16 day per year advance since 2006 (21 June)
described in Rockwell and Gormezano [34]. The actual hatch date will vary over a span of 7
days each year due to asynchronous nest initiation [34]. Using the peak (or mean) hatch date

Land-Based Foods May Alleviate Polar Bear Energy Deficits

PLOS ONE | DOI:10.1371/journal.pone.0128520 June 10, 2015 6 / 21



will result in a slightly different projected overlap with polar bear arrival from what was re-
ported earlier based on annual advance rates [34]. Assuming a 1:1 sex ratio among adults [42]
and all females bred, we estimated energy values for 71,068 clutches and 284,272 eggs, using a
modal clutch size of 4. We calculated values for partial clutches for the 3 days after laying was
initiated until day 4 when most clutches were complete (i.e., contained 4 eggs) and assumed
that both eggs and adult females would be vulnerable to predation during laying and incuba-
tion. A daily nest survival rate was computed based on an overall nesting success of 91.5% over
the 24-day incubation period (0.9962 = 0.915(1/23 days)) [26].

Post-hatch gosling survival varies annually, depending, in great part, on the degree to which
hatch coincides with peak emergence of wetland grasses (e.g., Puccinellia phryganodes) that
goslings forage upon [42]. Years of closer match between hatch and peak emergence of grami-
noids (hereafter “good years”) results in higher survival rates 30 days after hatch (e.g., 2013
s = 0.795, computed from the decline in the proportion of goslings between hatch and banding
operations 30 days later when the proportion of goslings is again estimated). Years when hatch
precedes graminoid emergence (hereafter “bad” years) result in lower survival during the same
period (e.g., 2007, s = 0.525). The number of goslings on day 1 (260,109) was computed from
the proportion of successful nests multiplied by 4 (modal clutch size). Gosling numbers from
day 2 to 30 were computed using daily survival estimates for good (0.9921 = 0.795(1/29 days)),
bad (0.9807 = 0.525(1/29 days)) and an average year (0.9864 = 0.660(1/29 days)), using the midpoint
of good and bad.

Fat and protein values were available for neonates [43], however only body mass and pro-
tein measures could be obtained for growing goslings (at days 31 and 43) from Akimiski Island,
Nunavut [44], where snow geese are generally smaller than those nesting further north on the
CCP (R.F. Rockwell pers. obs.). To establish general relationships describing increases of both
protein and body mass, based on 3 measures (days 1, 31 and 43), we calculated the daily aver-
age geometric growth rates between measurements using the following equation:

Daily Growth Rate ¼ ðmiþ1=miÞ1=ðtiþ1�tiÞ ð5Þ

wherem is the measured content (e.g., mass, protein) in kilograms and t is time in days be-
tween the measurements. Between days 1 and 31 daily increases in protein and mass were
1.1164 and 1.0988 grams, respectively, and between days 32 and 43, growth slowed to 1.0175
and 1.0128 grams of protein and mass, respectively.

To relate the proportion of protein to mass of the goslings observed on Akimiski Island to
the larger ones on the CCP, we first used regression to establish a general relationship of how
body mass of CCP goslings changes through the growth period. Using body mass values of ne-
onates from the McConnell River in Nunavut (i.e., similar mass to CCP neonates) [43] and
those from the CCP from days 23 to 50 (R.F. Rockwell, unpublished data), we fit a power func-
tion to describe changes in body mass with time (y = 85.479x0.7766; R2 = 0.99). We then multi-
plied ratios of protein to body mass calculated from the Akimiski Island gosling data [44] to
the masses of goslings in CCP to estimate daily protein content.

To estimate fat content of goslings, we used a lipid index model from Table 4b in Aubin
et al. [45] that describes how fat reserves decrease with gosling age. We scaled the index units
to known lipid values (in grams) for neonates (i.e., day 1) [39,46] and fit the data to a power
function (y = 0.562x-0.992; R2 = 0.74) that predicts daily fat content and suggests a drastic drop
after day 3 when the remaining yolk is exhausted by the gosling. Grams of fat and protein were
converted to gross energy using standard coefficients of 9.39 and 4.30 kcal g-1, respectively
[47,48]. We further scaled these by the digestibilities of fat and protein for polar bears (0.97
and 0.84, respectively) provided by Best [49].
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Both adult males and females are present during incubation, however, females of both snow
geese and common eiders (Somateria mollissima) have been observed being attacked by polar
bears while guarding their nests [50]. During these attacks the females are stalked slowly then
rushed by polar bears [50] suggesting that females are vulnerable to predation during this peri-
od even though capable of flight. For this reason, we include the caloric value of adult females
(not males) from the initiation of laying through hatch using fat and protein values from
Ankney and McInnes [51]. We fit a power function (y = 2E+19x-7.31; R2 = 0.99) to the calculat-
ed available energy (kcal) modeled with time for the laying, early and late incubation periods
and predicted daily energy values from day 1 of incubation through hatch for 35,534 females.

Approximately 18 days after hatch, adults begin molting their flight feathers [52,53] and
both sexes are vulnerable to predation (e.g., [22,54]). We calculated the available energy (kcal)
from protein reserves (fat content is negligible) of both adult males and female during the post-
hatch, early and late molt periods [51,55]. A linear regression model was fit to the average
available energy of males and females with time (y = 2E+06x-1.491; R2 = 0.63) and used to pre-
dict energy values from the beginning of molt (2 July) to flying, approximately 4 weeks later (2
August). Gross energy from protein was scaled by Best’s [49] estimate of digestibility (0.84).

Caribou. Unlike the case for snow geese, there is no long-term database available for the
caribou of the CCP. In generating our estimates of available calories, we have relied on all infor-
mation there is on this herd and information from studies of mostly nearby herds. Rigorous
population surveys are lacking for the Churchill caribou herd, however recent counts (in 2005
and 2012) suggest a stable minimum population size of approximately 3000 animals (R. Brook
and C. Elliott pers. comm., [56,57]). Using this value as a lower limit, we consider caloric values
from a total of 3000, 4000 and 5000 individuals (D. Hedman, pers. comm., [56,57]) to reflect
the uncertainty surrounding population size. The number of adults was estimated based on a
sex ratio of 0.85:1, males to females [58].

Calves were most often first sighted on or around 1 June in the CCP (R.F. Rockwell, pers.
comm.), so this date was chosen as day 1 to determine calf composition based on daily growth
with age. This date seems reasonable since it occurs midway between peak calving in the Pen
Islands herd to the south (17–28 May) [59,60] and the Qamanirjuaq herd to the north (5–15
June) [61]. Although data from collared females in the Churchill herd indicate that adult fe-
males typically migrate toward the coast in April (V. Trim, pers. comm.), we considered all age
and sex classes of caribou to be vulnerable to predation by polar bears from the onset of calving
(1 June) until they leave the coast by 15 October (total days = 137 days) (V. Trim, pers. comm.)

Calf survival was based on observed proportions of calves in the population and estimates
of mortality during different times of the year. We used an estimate of 21.1% calves during the
post-calving period (~ 1 July) based on the average of counts from 2008 (23.1%) and 2009
(16.1%) in the Pen Islands Herd [60]. We estimated calf mortality (28.6%) from birth to the
post-calving period (1 July), based on average mortality estimates for the Porcupine herd in
Alaska during the first month after birth (1983–1985) [62]. Using the proportion of calves
present in the population on 1 July (21.1%) and calculating the average daily survival from 1
June (birth) to 1 July (0.9888 = 0.714(1/30 days)), we estimated that neonate calves (prior to mor-
tality) comprised 29.6% of the population. We used an estimate of over-winter calf survival
(14.7%) based on average calf to adult ratios (17.2:100) from late winter surveys of the Chur-
chill herd conducted in 2012 and 2013 (V. Trim, pers. comm.) to calculate the survival rate
(0.6967) from 1 July to 1 March based on the average change in proportion of calves in the
population during this period. The average daily survival rate during this period was calculated
in a similar fashion as above (0.9985 = 0.6967(1/242 days)).

We also used the proportion of calves in the population that survived the winter (14.7%) to es-
timate the proportion of yearlings available during summer. Given that 12–15% recruitment is
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generally considered to be the threshold for population stability in caribou populations [63] and
the Churchill herd is considered relatively stable [57], an estimate of 14.7% is not unreasonable.

The fat and protein content (kg) of adult females and calves at different stages of growth
were taken from Gerhart et al. [64] based on data from the Central Arctic and Porcupine
herds. Gerhart et al. [64] developed a series of equations to predict fat and protein content of
caribou from measurements of total body mass (kg). We used standard coefficients, 4.30 and
9.39 kcal g-1, to convert predicted fat and protein, respectively, to gross energy. Available ener-
gy was calculated using digestibilities of fat and protein (0.97 and 0.84, respectively) provided
by Best [49]. Energy values for adult males and yearlings were predicted using these relation-
ships from body mass (kg) values of Svalbard reindeer (for adult males) [65] and Svalbard rein-
deer and caribou (for yearlings) [65,66] at various times of the year.

Daily changes in fat and protein composition for adults, yearlings and calves were calculated
using Eq (5). Daily growth rates of fat and protein in calves were calculated based on measure-
ments obtained for 1 Jun, 27 Jun, 23 Oct., 11 Sep. 13 Oct., corresponding to days 1–134 from
birth [64]. Measurements for adult females were obtained for 7 May, 7 Jul., and 3 Oct. [64]. We
obtained monthly estimates of body mass for adult males and yearlings and estimated daily
growth rates from the mid-point of each month, including May, Jun., Aug., Oct. (and Nov. for
adult males only) [65,66].

Results
Of the 97 adult male polar bears sampled, Molnár et al. [8] predicted that 28% (27) and 48% (47)
would starve if resting or walking before energy depletion, respectively. Of those bears that were
resting before starving, we found that many (10) experienced energy deficits of less than 50,000
kcal. Of those bears that were walking before starving, most (28) experienced deficits less than
100,000 kcal, with most falling between 50,000 and 100,000 kcal based on our analyses (Fig 1).

Potential energy available from land-based foods
The energetic value of all stages of LSGO (eggs, goslings, adults) calculated for the 2013 popula-
tion size was approximately 11,702, 10,959 or 10,334 million kcals depending on whether it
was a good, average or bad gosling survival year, respectively. During an average gosling surviv-
al year, eggs, pre-hatch adult females and flightless adults comprised 11.8%, 31.2% and 16.4%
of the total kcals available to polar bears. Goslings comprised 47.4%, 40.6% and 34.9% of the
total available kcals in good, average and bad survival years, respectively. The number of
clutches and their respective caloric values both dropped over the course of the 24-day incuba-
tion period. For example, on day 1 approximately 71,068 clutches were each worth 840.05 kcal,
whereas on day 24 the number of clutches drops to 65,027 and were each worth 493.18 kcal.
Goslings, available for 43 days, grew rapidly and range in value from 118.68 kcal at hatch to
1128.23 kcal shortly before flight (�x = 576.61 kcal). Pre-hatch females could provide the most
energy per unit and were most valuable during laying and beginning of incubation (3394.46
kcal), then rapidly lost weight over the 27-day period, dropping to 1015.84 kcal just before
hatch (�x = 1950.04 kcal). Flightless adults, having exhausted their fat reserves, could provide
between 603.76 kcal (post-hatch) to 505.64 kcal (before flight), with an average value of 552.38
kcal over the 25 days that they were available (Fig 2).

Caribou can provide a total of 38,584, 51,445 or 64,307 million kcal for an estimated popula-
tion size of 3000, 4000 and 5000, respectively. Assuming an average population size of 4000,
calves, yearlings, adult females and adult males comprised 6.2%, 7.8%, 45.9% and 40.1% of the
total energy available to polar bears. Adult females were each worth 70,964.09 kcal at the onset
of calving and increased to 141,066.20 kcal by the middle of October (�x = 89,835.99 kcal).
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Calves and yearlings also steadily gained mass and were each worth 4,751.22 and 34,132.37
kcal, respectively, on 1 June, and increased to 51,653.94 and 55,921.61 kcal by 15 October, aver-
aging 29,539.02 and 50,072.52 kcals, respectively, while on the calving grounds. Individual
adult males arrived at the calving grounds potentially worth 64,415.41 kcal and steadily in-
creased in value until the onset of the rut (approx. 15 Sep.), peaking at 139,641.91 kcal, then
dropping to 118,835.01 kcal over then next month, averaging 105,956.41 kcal (Fig 3).

Compensation to starving polar bears
Molnár et al. [8] used the average body lengths (2.34 m) across their sample of adult male polar
bears, leaving initial body mass as the sole determinant (except for movement costs) of whether
a bear would starve during an extended 180-day ice-free season and for how many days energy
compensation would be needed. Assuming the current mean body length has future legitimacy,
adult male polar bears (� 7 years old) would starve shortly after reaching 191.93 kg and would
require approximately 4,450.28 kcal d-1 upon reaching that threshold mass to survive.

Adult male caribou could provide the most energy per unit, with less than 5 animals per
polar bear (<1 every 27 days) needed to prevent starvation for the entire 180-day ice-free peri-
od under scenarios of resting or walking. Because of the high caloric value of each caribou and
the incidences of multiple polar bears feeding off a single caribou carcass (Fig 4), the exact pro-
portions of each animal that would be required to meet the daily caloric needs may be impor-
tant and are presented (Fig 5a and 5b). Calves, though considerably smaller, could still

Fig 1. The number of starving adult males that are expected to come ashore with different-sized energy deficits during a 180-day ice-free season.
Calculations are based on the additional kilocalories required for daily somatic maintenance and limited movement (2 km d-1) needed to prevent starvation in
each bear for the entire projected 180 days ashore.

doi:10.1371/journal.pone.0128520.g001
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potentially support a starving walking polar bear in the 5th percentile with 15.8 units or approx-
imately 1 calf every 8.7 days while they are available. As expected, smaller food units would re-
quire more frequent effort to obtain. For example, to sustain a starving walking bear in the 5th

percentile ~26 clutches of eggs or 19 goslings would need to be consumed each day. For starv-
ing walking bears in 50th percentile, the effort would drop to 10 clutches and 7.5 goslings per
day. The minimum number of units of each food required to sustain polar bears in each condi-
tion percentile are presented in Fig 5a and 5b.

Given the opportunistic nature of polar bears [13,21], combinations of food items may be a
more realistic means to fulfill daily energy deficits, especially since availability of different age
classes of each item does not necessarily overlap (e.g., LSGO, Fig 2). For example, to sustain
starving walking polar bears in the 50th percentile would require consuming ~5 egg clutches
every 3 days, ~1 incubating female off the nest every 3 days, ~2 goslings every 3 days, 1 flight-
less adult each day and 1 adult male caribou. Different food combinations for each condition
percentile for walking and resting starving polar bears are presented in Fig 5a and 5b.

Maximum number of starving adult male polar bears supported by each
food
Assuming a polar bear population size similar to the last estimate (935) [33] and the proportion
of adult males remains constant (~25%), then the available calories from eggs, LSGO and

Fig 2. The total available energy from snow geese and their eggs during the laying, incubation, post-hatch andmolting stages of their life cycle
that occurs in the Cape Churchill Peninsula. The mean hatch and polar bear arrival dates provided (left-most vertical dashed lines) are for 2013, however,
if the ice-free season expands to 180 days, polar bears would arrive before nesting geese and thus have access to all the available energy illustrated.

doi:10.1371/journal.pone.0128520.g002
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caribou would each far surpass the energetic needs of adult males coming ashore at risk of star-
vation. To sustain 28% of resting adult males (66 = 935 � 0.25 � 0.28) for 117 days (the maxi-
mum # days that a resting starving bear would need supplementation for), the available
calories would surpass total energy required to sustain the starving bears by a factor of 38 for
eggs to a factor of 520 for adult female caribou. Similarly, to sustain the 48% of walking adult
males (112 = 935 � 0.25 � 0.28 � 0.48) that would be susceptible to starvation for 122 days (the
maximum time needed), the available calories would surpass those needed by a factor of 21 for
eggs to a factor of 291 for adult female caribou. The maximum number of adult male polar
bears that could be supported by LSGO for 122 days is 1,614, 5,551, 4,274 and 2,242 by eggs,
goslings, pre-hatch adult females and flightless adults, respectively (Fig 6). The maximum
number of adult males that could be supported by caribou is 4,378, 5,572, 32,651 and 28,464 by
calves, yearlings, cows and bulls, respectively (Fig 6).

Discussion
As the ice-free season expands with earlier spring breakup, polar bears are expected to come
ashore in western Hudson Bay with smaller energy stores [3] causing them to rely on terrestrial
food sources to compensate for energy deficits and avoid starvation. Molnár et al. [8] predicted
that, depending upon their activity while ashore, between 28 and 48% of adult male polar bears

Fig 3. The total available energy from different sex and age classes of caribou on the summer calving grounds on the Cape Churchill Peninsula. If
the ice-free season expands to 180 days, polar bears are projected to come ashore prior to the onset of calving, which is currently 1 June, and have access to
all the available energy illustrated.

doi:10.1371/journal.pone.0128520.g003
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would starve to death unless supplemental food was consumed. By evaluating the energy value
of novel foods that polar bears currently consume on land, caribou, snow geese and their eggs,
we found that there are sufficient calories to compensate for daily accrued energy deficits of
adult male polar bears expected to starve as the ice-free season expands to 180 days. The veraci-
ty of relying on these land-based resources, however, likely depends on a number of factors in-
cluding future prey availability, polar bear foraging behavior, energy costs associated with prey
procurement and physiological utilization of different macronutrients.

Although local populations of both snow geese and caribou have grown substantially since
the 1960s [13], future availability is difficult to predict. Both species have displayed weak phe-
nological shifts in response to climate change, as reproductive cycles are cued more by day
length than air temperature [34,35]. As a result, mismatches with emergent vegetation at the
peak of goose brood rearing and peak caribou calving as well as habitat changes have impacted
both species [57,67]. Snow geese in the CCP have responded to changes in food availability
(mostly due to destructive foraging) by inhabiting new areas, moving further inland from the
coast and consuming alternative plant species [67]. Further, there is evidence to suggest that
deficiencies from mismatches with emergent vegetation at the onset of brood rearing may, in
part, be compensated for by earlier access to berries later in the season (C.P. Mulder,

Fig 4. Three adult male polar bears feed on the remains of a bull caribou on Keyask Island (58.1695°N 92.8519°W) on the Cape Churchill Peninsula
on 8 August, 2012. This type of communal foraging illustrates the importance of how consumption of incomplete carcasses (as carrion or from predation)
can contribute to daily energy requirements. Here, the bear in the poorest physical condition (top) is most likely in need of the additional calories, however,
those in better condition still partake in the meal. Photograph by R.F. Rockwell.

doi:10.1371/journal.pone.0128520.g004

Land-Based Foods May Alleviate Polar Bear Energy Deficits

PLOS ONE | DOI:10.1371/journal.pone.0128520 June 10, 2015 13 / 21



unpublished data). Behavioral changes, such as range shifts, are possible with heavy predation,
however, the lack of such responses from other nesting geese experiencing arctic fox and polar
bear predation suggests that local snow goose populations would likely not alter their behavior
substantially (see [26] and references therein). Such adaptive responses to environmental
stresses and resilience in the face of rigorous management control attempts [38,68] suggests
that snow geese may remain a viable future food source for polar bears on the CCP.

The resiliency of caribou in the face of progressive environmental change is less certain [57].
Although the Churchill herd is currently stable, studies in other regions have suggested that in-
creases in variability and advances in emergence of commonly consumed plants with warming
temperatures have negatively impacted calf survival [35]. Other threats have included replace-
ment of preferred winter forage (i.e., lichen and herbaceous plants) with shrubs and grasses
from forest fires, grazing and warmer temperatures [69,70,71]. Also, projected increases in pre-
cipitation would give predators, such as wolves, an advantage potentially increasing mortality
[72]. These changes, however, can affect populations adapted to harsh conditions in different
ways [73], so that some populations are experiencing growth while others decline [57]. Given
the small number of animals required to satisfy the energetic requirements of starving polar
bears, it is unclear whether even modest future declines in the Churchill herd would hinder
polar bear predation efforts as long as caribou maintain their current distribution (i.e., along
the coast). Caribou may occupy the coast of western Hudson Bay (where polar bears occur in
high densities) for a variety of reasons including to avoid harassment by insects (e.g., [74]) so
whether the increased threat of predation would cause them to shift their distribution further

Fig 5. The number of indivudal units (left) or combinations (right) of food items that could satisfy total energy deficits (numbers on arrows in
center) of starving male polar bears onshore for 180 days. The levels of energy deficits vary from the lowest (95%) to the highest (5%) and are presented
for scenarios in which the bears have been resting (a) or walking (b) on land prior to starving. A 2 km d-1 energy cost associated with movement is
depreciated from daily food value calculations. If costs to procure food items exceed this movement cost, numbers of individual food requirements may
be underestimated.

doi:10.1371/journal.pone.0128520.g005
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inland is unknown. Encounter rates between polar bears and caribou may decrease with de-
clines in abundance and shifts in distribution, but the method of capture (e.g., ambush versus
chase) may be more important in determining predation success [75,76].

With the paucity of knowledge regarding energy consumption rates at varying speeds of
travel, especially for adult males (i.e.,> 235 kg), it is difficult to fully evaluate the feasibility of
the foraging scenarios suggested. However, based on past and current behavior, it is clear that
polar bears are capable of successfully capturing land-based ungulates, such as caribou (R.F.
Rockwell, pers. obs., [77]) and muskoxen [78] and actively pursuing them in western Hudson
Bay and other regions (L.J. Gormezano, pers. obs., [23,56]). The mean digestible energy content
of a seal, pooled across age classes, is 69,047 kcal [79], which is roughly equivalent to the aver-
age worth of an adult female caribou during June and July, although most of the energy is from
protein rather than fat. Using surprise hunting techniques, such as stalking and ambushing,
whereby landscape features (i.e., ice, water) are used to mask their approach, polar bears are
able to successfully capture seals without engaging in potentially costly pursuits [80,81]. Polar
bears have employed these same techniques on land, using shrubs and physiographic features
as cover to surprise caribou (R.F. Rockwell, pers. obs., [56]) suggesting equivalent (seal) calories
could be obtained on land without drastic changes in energy output. Further, caribou capture
rates (1 every 8.7–31.1 days) required to sustain starving walking polar bears coming ashore in
the worst condition, are comparable to capture rates (1 seal every 5.6–24.4 days) [4] of different
aged seals by polar bears in spring and summer.

Consumption rates of snow goose eggs and goslings that would compensate starving walk-
ing bears ranged from 3 to 26 clutches of eggs and 2 to 19 goslings per day depending on daily

Fig 6. Themaximum number of adult male polar bears projected to starve as the ice-free season expands to 180 days that could be supported by
the total energy pools from each food resource. Estimates are based on 2013 population sizes of each prey and take into account somatic maintenance
and daily movement costs. Values may be overestimated if true procurement costs exceed those included.

doi:10.1371/journal.pone.0128520.g006
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energy deficits. High daily depredation rates of goose nests have been reported in populations
around the Arctic (e.g., 108 barnacle goose nests) [82] but can vary depending on nest density
and total availability [83,84]. Based on camera footage of an common eider colony in western
Hudson Bay, some polar bears were consuming between 19 and 38 nests per day (D. Iles, un-
published data) suggesting that the maximum consumption rates required to support starving
bears (26 clutches) is not unrealistic. Also, polar bears coming ashore 60 days earlier (as would
be projected for 2068), they would overlap the entire incubation period, which would provide
substantially more calories to arriving bears than are currently available [34].

Capture rates of goslings and adults are rarely reported [85,86] but observations of polar
bears capturing and consuming up to 3 individuals per day (of various ages) have been re-
ported for snow geese [22]. The extra skill and effort required to obtain birds (as opposed to
eggs) might pose limitations on meeting daily energy requirements from birds alone, however,
maximum rates suggested in the combination diet (0.2 to 1.2 goslings d-1, for example) are
quite reasonable. Further, anecdotal observations of flightless goslings and adult snow geese
being consumed consecutively by the same bear [22] and remains of adult snow geese and eggs
recorded in the same scat (25% of scats with eggs) further suggests a combination diet (Fig 5a
and 5b) would be a more realistic means to satisfy daily energy requirements.

The large numbers of starving polar bears that can be supported by each food resource sug-
gest that surpluses would be available for other age and sex classes coming ashore with energy
deficits. It is important to note, however, that the actual number of bears that will come ashore
with energy deficits is unknown and may increase over time as marine food resources become
limited. Further, the only costs associated with procurement of prey are a 2 km d-1 movement
cost above somatic maintenance. Similar to lions (Panthera leo), polar bears are considered in-
efficient walkers so extended pursuits could reduce energetic returns [87]. Pursuits of geese on
land rarely exceed 30 seconds (R.F. Rockwell, pers. obs., [22]), however, pursuits of caribou
(running, walking and swimming) have lasted up to an hour (L.J. Gormezano, pers. obs.,
[23,56]) suggesting that costs associated with each capture (including failed attempts) could
be substantial.

Williams and Yeates [88] calculated an efficiency ratio (benefits/costs) of 3.8 for African
lions pursuing ungulates on land. Given the comparable locomotive inefficiencies between
lions and polar bears (Gormezano and Rockwell, unpublished data, [87,89]) it is possible that
when polar bears engage in longer distance pursuits, as opposed to more energy conserving
surprise techniques, a similar efficiency ratio could apply. In a hypothetical example, we ap-
plied this ratio to the energetic returns for caribou and found that it increased capture costs
(i.e., above somatic and movement) 1.7, 3.0, 5.3 and 6.3 times their previous value of approxi-
mately 4,450 kcal for calves, yearlings, adult females and adult males, respectively. Applying
these increased costs to the calculation of the number of starving walking polar bears supported
by the total calories from adult male caribou, for example, would reduce the number supported
by 84% from 28,464 to 4,543 bears. Although the exact energetic costs of polar bears pursuing
caribou using different hunting strategies remain unknown, the data presented here provide a
basis to estimate them once the appropriate behavioral and energetic studies have been
performed.

Previous studies have questioned the use of land-based foods to satisfy daily energy require-
ments while polar bears are on land [90,91]. Hobson et al. [11], for example, tested carbon di-
oxide exhaled by anesthetized polar bears in summer to evaluate whether a marine (seal) or
terrestrial (berry) stable-carbon signature would be obtained and thus, which was supplying
energy for current metabolic processes. Finding signatures that were almost identical to seals
(and different from berries), they concluded that all bears were persisting solely on energy de-
rived from oxidized fat reserves accumulated while on the ice [11].
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It is possible, however, that the metabolic states of the bears in the Hobson et al. [11] study
were altered due to the biochemical effects of being captured [92]. Using the same drugs and cap-
ture protocol, Cattet [12] found that the plasma cortisol levels of polar bears after capture were
extremely elevated and although they decreased 40–50% after 1 hour, he noted that the physio-
logical effects would continue well after the plasma cortisol levels decreased. He also observed
sustained concentrations of plasma glucose correlated with the cortisol surge and suggested the
bears may be exhibiting insulin resistance [12]. One of the many effects of cortisol is to sensitize
adipose tissue to the action of lipolytic hormones and to cause insulin resistance by decreasing
the rate at which insulin activates the glucose uptake system [93]. As a result, insulin resistance
leads to the disinhibition of lipolysis in humans [94]. If similar processes occur in polar bears, the
use of fat as a metabolic fuel that Hobson et al. [11] observed may not represent the prevalent
process, but instead, may have been temporary and triggered by the stress of capture [92].

Furthermore, certain foods that polar bears consume on land can complicate results of bio-
chemical studies to distinguish ‘marine’ versus ‘terrestrial’ sources of expended energy using
stable carbon isotopes (δ13C) [14,95,96]. For example, marine algae (Laminaria spp. and
Fucus spp.), typical C4 plants that polar bears commonly consume from land, are more en-
riched with carbon and have higher δ13C values (-24 to -12‰) compared to most C3 (terrestri-
al) plants, although values range widely depending on plant part and time period sampled
[14,95].

Similarly, waterfowl, such as snow geese, Canada geese (Branta canadensis) and common ei-
ders, summering on land in western Hudson Bay can exhibit ‘marine’ signatures from foraging
on plants and animals in brackish marshes and marine habitats [97,98]. Muscle δ13C values
for the aforementioned and other seabirds that polar bears consume can range from (-22.0 to
-15.5‰) [15,97,98], which clearly overlap δ13C values for ringed seal muscle (-19.4 to -18.1‰)
[90,97] and could, therefore, lead to erroneous conclusions regarding the sources of energy
used on land. Without specifically including these terrestrial foods (i.e., marine algae, birds) a
priori in carbon isotope mixing models, their proportional contribution can not be accurately
assessed [99], especially given the range of food combinations observed in the summer diet
from scat analysis [21].

Earlier arriving bears may come ashore with greater nutritional deficits from lost seal hunt-
ing opportunities as the ice-free season expands [7] but calories necessary to prevent starvation
will likely be available from land-based resources, such as caribou, snow geese and eggs. The
projected earlier 60-day arrival would allow polar bears to overlap both the entire incubation
and calving periods of snow geese and caribou, respectively, creating new phenological matches
to compensate for the growing mismatch with seals. Using the same energy-saving, surprise
hunting methods (e.g., ambush, stalk) to hunt geese and caribou that they typically use to cap-
ture seals [80,81], would provide polar bears energy compensation similar to the maximum
values reported here. Until further behavioral and oxygen consumption studies are performed,
however, the true costs associated with different foraging strategies and thus the total energy
returns can only be approximated.
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