Eye Colour, Aging, and Decoy Trap Bias in Lesser Scaup, *Aythya affinis*

1 Department of Biology, University of Saskatchewan, 112 Science Place, Saskatoon, Saskatchewan S7N 5E2 Canada
2 Environment Canada, Prairie and Northern Wildlife Research Centre, 115 Perimeter Road, Saskatoon, Saskatchewan S7N 0X4 Canada
3 Corresponding author: e-mail: bob.clark@ec.gc.ca
4 Present address: Wildlife Research and Development Section, Ontario Ministry of Natural Resources, 2140 East Bank Drive, Peterborough, Ontario K9J 7B8 Canada
5 Present address: Département de biologie, Université du Québec à Rimouski, 300 Allée des Ursulines, Rimouski, Québec G5L 3A1 Canada
6 Present address: New Brunswick Department of Natural Resources, 1350 Regent Street, Room 120, Fredericton, New Brunswick E3C 2G6 Canada

Researchers routinely assume that samples of trapped or captured animals are representative of the overall population, though these assumptions are not always evaluated. We used decoy-trapped Lesser Scaup (*Aythya affinis*) to assess the reliability of classifying females as yearlings or adults from a distance, based on documented age-related eye-colour changes, and also to evaluate the presence of sex, condition and age biases in decoy trapping. We compared eye colour of trapped females to photographs of known-age females following a published procedure while females were (1) in traps (by using spotting scopes or binoculars) and (2) in-hand. Assuming in-hand age assessments were correct, we found that adults aged from a distance were frequently misclassified as yearlings, but yearlings were never misclassified as adults. Distance between observer and female, overall observation quality, and cloud cover did not influence age assignment success. A larger proportion of males was captured than observed during a survey of the local breeding population. We also found that decoy-trapped females had lower body mass and were more likely to be yearlings compared to pass- and jump-shot females from the same area. We conclude that female Lesser Scaup cannot be accurately aged from a distance using eye colour and concur with other researchers that possible sex, age and condition biases should be evaluated when using decoy traps.

Key Words: Lesser Scaup, *Aythya affinis*, age bias, aging techniques, body condition bias, decoy trap, sex bias, trap bias, Saskatchewan, Northwest Territories.

In wildlife studies, individual animals are often sampled and their age, sex, and condition are determined. An implicit assumption of many studies is that different cohorts of a population are equally likely to be encountered relative to that of the wild population at a given time and place. However, true random samples are difficult to collect as some individuals may have an increased probability of being captured. By evaluating sampling techniques, possible biases in sampling can be discovered, minimized and compensated for.

Researchers sample wildlife populations in numerous ways to collect information uniquely suited to the research questions being asked. Age-ratio information is useful for understanding population dynamics and making wildlife management decisions, and may be collected by examining trapped individuals or those killed by hunters or disease (e.g., Lack 1968; Johnson et al. 1992). Age structure also provides a basis for assessing age-specific vital rates (Newton 1988) and estimating productivity. However, some sampling methods (trapping, hunting, observation, collection of diseased animals) could produce biased estimates (Bellrose et al. 1961; Weatherhead and Greenwood 1981). Trauger (1974) used the unique characteristic of age-related eye-colour change to develop an aging technique for female Lesser Scaup (*Aythya affinis*, hereafter scaup), and used this technique to estimate annual fluctuations in female age composition of scaup breeding populations by estimating the age of female scaup from a distance. However, the reliability of this method has not been assessed.

Decoy traps are a common capture technique for waterfowl and other birds (e.g., Rogers 1964; Anderson et al. 1980; Weatherhead and Greenwood 1981; Grand and Fondell 1994; Guyn and Clark 1999); however, the use of decoys has been shown to bias sampling for some species, with individuals of one sex (Grand and Fondell 1994), age group (Weatherhead and Greenwood 1981), or body condition (Weatherhead and Greenwood 1981) being more susceptible to capture than others. Given that decoy traps work by attracting individuals into enclosures, it is reasonable to assume that some may be more vulnerable than others, possibly due to differences in experience (age), aggression...
eye-colour numbers from Trauger’s (1974) chart (each number), but, if not possible, we recorded individual assignments by consensus (agreement of eye colour chart from yearlings to adult birds (3+ years). Age was eye colour from brown to yellow as female scaup age chart provides examples of the progressive change in provided in Trauger (1974). Trauger’s (1974) eye colour by two or more observers using the eye colour chart from yearlings to adult birds (3+ years). Age was assigned by consensus (agreement of eye colour chart number) but, if not possible, we recorded individual eye-colour numbers from Trauger’s (1974) chart (each age class is represented by two or more chart eye-colours). If observers disagreed on the age class or the consensus age class did not correspond to the actual age of the female, the in-hand assignment for that female was scored as being incorrect. The accuracy of in-hand aging was determined by comparing a female scaup’s known age to that estimated during recapture.

Work was also conducted on the Yellowknife Study Area (YKSA), located 16 km northwest of Yellowknife (62º28’N, 114°24’W), Northwest Territories, Canada. The YKSA was described in detail by Trauger (1971) and Fournier and Hines (1999). We trapped pre-laying scaup between 18 May and 2 June 2000, 24 May and 7 June 2001, 31 May and 16 June 2003, and 2 June and 13 June 2004. Decoy traps were modified from Rogers (1964) and Anderson et al. (1980), and live captive-bred female scaup were used to decoy wild birds. Traps were placed on ponds with frequent scaup use.

We classified female scaup into two age classes, yearlings (1 year old) or older (2+ years), by comparing their eye colour to the eye colour chart examples of known-aged female scaup provided in Trauger (1974). Trauger (1974) reported that 66% of known-age two-year-old females had eye colour that was indistinguishable from three- and four-year-olds. By contrast, he found little overlap in eye colour between yearlings versus three- and four-year-old birds. Accordingly, we classified females as yearlings if their eye colour was brown to olive brown; females with eye colour ranging from olive yellow to yellow were classified as two-year-old or older.

We estimated scaup eye colour for females captured in decoy traps using either spotting scopes (20 – 60x) or binoculars (8 – 10x). Two observers estimated each female’s age and distance from observer to the trap (to nearest 10 m). Each observer also estimated the percent cloud cover (to assess light quality, 0% to 100%) and their individual observation quality (1 = excellent to 4 = poor, based on observation obstructions, light quality, wind and distance to trap). We then aged the same females in-hand. Observers recorded age assignment in confidence and did not age the female for both age assignments (i.e., each female was aged by at least three researchers) such that observers alternated between age assignment methods (i.e., from a distance versus in-hand) to reduce observer bias in 2000; however, only two observers were present in 2001. In 2003 and 2004, females were only aged in-hand by two observers after being removed from the trap. Age was assigned by consensus; if none could be reached then individual eye colour chart numbers (Trauger 1974) were recorded.

Decoy trap sex bias

Sex was recorded for all decoy trapped scaup captured on the YKSA from 2000 to 2004. Pair survey data were also collected on all ponds on the YKSA and completed during systematic surveys over 2 – 3 days (Trauger 1971; J. E. Hines, Canadian Wildlife Service,
unpublished data). These surveys occurred in early June each year, during the last few days of the trapping period.

Decoy trap condition and age bias

In 2003 and 2004, we collected female scaup by pass- and jump-shooting (see Greenwood et al. 1986) on wetlands within 75 km northeast of Yellowknife, east of the YKSA where scaup were trapped. We collected female scaup from 24 May to 17 June 2003 and 26 May to 20 June 2004 (overlapping with the decoy-trapping period). Most were collected immediately before and after the decoy-trapping period. All birds were weighed (nearest 0.5 g) immediately after retrieval and ingesta were removed and weighed (nearest 1 g) later during dissections. We calculated ingesta-free body masses (IFmass) of shot birds by removing actual ingesta mass. All decoy-trapped females from the YKSA were weighed (nearest 0.5 g) after capture; no mass adjustment was made for these birds because they would have little remaining ingested food after being held in traps for periods of 1-3 hours, then retrieved and handled (Dufour 1991).

Shot females were assigned an age class using eye colour (Trauger 1974; also see above) and wing plumage criteria (Carney 1992); in 2003 and 2004, 24 and 25 females were assigned an age class, respectively. The wing plumage aging criteria for female scaup is based on appearance of tertials, greater tertial coverts, and middle and lesser coverts, allowing fall- and winter-shot females to be aged as immature or adult (Carney 1992). Juvenile scaup females moult a few innermost wing coverts in their first spring (before one-year-old), and therefore retain most of their juvenile wing plumage characteristics (Basic I Plumage) until they moult from Basic I to Definitive Alternate Plumage during their second fall (Palmer 1976; Austin et al. 1998). Therefore, in spring, a female less than a year old would be correctly aged as a one-year-old based on wing plumage and eye colour. When disagreement between aging techniques occurred or when aged using wing plumage only (five in 2003, five in 2004), females were classified into a general category, after hatch year (AHY), for this analysis.

Statistical Methods

Accuracy of distance aging – Field methods and observers differed between 2000 and 2001 when collecting distance-eye-colour data, so years were analyzed separately. The accuracy of distance-aging was determined by comparing age assignments from distant observations versus in-hand age determination, using a Fisher’s exact test (PROC FREQ; SAS Institute 2000). We assumed in-hand designation was correct for both observers agreed on female age. We modeled effects of overall observation quality (observer one individual observer quality + observer two individual observer quality)/2, percent cloud cover, distance from observer to trap, and the interaction between observation quality and distance from observer to trap on the success of age assignment using general linear models (PROC GLM; SAS Institute 2000). Simpler models were considered (Appendix 1) and the most plausible model was selected using Akaike’s Information Criterion corrected for sample size (AICc) and model weight (wAICc; Burnham and Anderson 1998).

Sex bias – We evaluated the possibility of sex bias using a chi-squared test (PROC FREQ; SAS Institute 2000) to compare the sex ratio of trapped scaup (not including recaptures) with that estimated for the YKSA population during annual breeding pair surveys conducted in June (J. E. Hines, CWS, unpublished data).

Body condition and age bias – Body mass and age (yearling, adult and AHY) in the decoy-trapped sample were compared to collected females. We initially plotted data to identify outliers or nonlinear patterns, but none were detected. Least squares means (LSmean) and standard errors (SE) were computed to describe year and method-specific variation in body masses of females. We modeled effects of year (2003, 2004), collection method (decoy trap, shot), day and all two-way interactions on IFmass using general linear models (PROC GLM; SAS Institute 2000). Reduced models were also considered (Appendix 1) and the most plausible models were selected using AICc, and model weights (wAICc; Burnham and Anderson 1998). Contingency tables were evaluated using a G-test (PROC FREQ; SAS Institute 2000).

Results

Accuracy of distance aging

Twelve known-age female scaup were captured and aged at SDNW A in spring from 1998 to 2000. When observers agreed, most females were aged correctly as either yearlings or adults (61%, 89%). Observers disagreed three times on age assignment (3%, 25%), all of which occurred when classifying known-age yearlings (n = 1) and 2 year-olds (n = 2). A total of 43 decoy-trapped females was aged both from a distance and in-hand on the YKSA during May and June 2000, 2001. There was agreement between observers for 89% and 82% of females aged in-hand in 2000 and 2001, respectively. When both observers agreed on age, for both in-hand and distance aging (60% in 2000 and 41% in 2001), age assignments were correct for 100% of yearlings (n = 5) and 56.3% of adults (n = 16) in 2000, and 100% of yearlings (n = 2) and 80.0% of adults (n = 5) in 2001. Assuming in-hand age assignments are correct when both observers agree, in 2000, aging from a distance underestimated the age of female scaup (Fisher’s exact, 2-sided, P = 0.04, n = 21, Figure 1); many adults were mis-assigned as yearlings. However, in 2001, only one female’s age was underestimated from a distance (n = 7).

There was no significant difference between years in observers’ ability to age females correctly (χ² = 0.87, P = 0.35). Our ability to age females correctly from a
distance was best modeled when we included distance as a covariate (ΔAICc = –38.42, w = 0.20); however, considerable variation remained (R² = 0.003). This model was only slightly better than the models which included the effect of cloud (ΔAICc = 0.09, w = 0.19), overall observation quality (ΔAICc = 0.20, w = 0.18), and cloud with overall observation quality (ΔAICc = 0.90, w = 0.13).

Decoy trap sex bias

We caught 52 (n = 35 in 2000; n = 17 in 2001) female and 164 (n = 81 in 2000; n = 83 in 2001) male scaup in decoy traps during May and June on the YKSA. Relatively more males were captured in traps than were observed during a survey of the study area (2000: χ² = 8.2, P < 0.005; 35 females and 81 males decoy-trapped; 254 females and 317 males observed on June survey; 2001: χ² = 21.9, P < 0.005; 17 females and 83 males decoy-trapped; 191 females and 271 males observed on June survey) (Figure 2).

Decoy trap condition and age bias

We shot 29 and 30 and decoy-trapped 17 and 25 females in 2003 and 2004, respectively. Overall, females were heavier in 2003 than in 2004 (L~mean = 727 ± 8 g versus 676 ± 7 g), and shot female averaged ~31 g heavier than decoy-trapped females (717 ± 7 g versus 686 ± 8 g). Variation in female body mass was best modeled by including effects of year, collection method, day and the interaction between day and year in the model (AICc = 375.08, w = 0.351, R² = 0.369). This model was slightly better than the two next best which either lacked the interaction term between day and year (ΔAICc = 1.18, w = 0.194), or lacked collection method (ΔAICc = 1.23, w = 0.190). Two additional plausible models (ΔAICc < 2.70) included effects of collection method, year, day and interactions involving year*day and year*method (w = 0.112), or simply included year and day effects (w = 0.095). Because the year*day and, to a lesser extent, year*method interactions were influential, we analyzed each year separately. Body mass did not vary with age; after accounting for year, method, day and day*year interaction effects, 63 adult females (mean ± SE, 706 ± 7 g) averaged 13 g heavier than 24 yearling females (693 ± 11 g), whereas 14 AHY females had intermediate masses (701 ± 15 g). In a separate analysis of 2003 females, variation in body mass was only weakly related to age (L~mean ± SE, adjusted for collection date: adult = 728 ± 14 g, yearling = 718 ± 14 g) or collection method (trap = 713 ± 16 g; shot = 733 ± 14 g). There was considerable annual variation in the proportion of yearlings captured in decoy traps, ranging from 16-82%, with an overall average of 37% during 2000-2004. Of birds collected by shooting, 17% of 24 and 92% of 25 were yearlings, versus 82% of 17 and 81% of 21 females captured in decoy traps, in 2003 (G₁ = 18.8, P < 0.001) and 2004 (G₁ = 1.23, P = 0.27), respectively.

Discussion

Accuracy of distance aging

The distance-aging technique for female scaup did not provide a reliable estimate of population age ratio (yearling:adult) when compared to in-hand aging and would result in an overestimation of yearlings (assuming in-hand age was correctly assigned). Distance aging was not strongly affected by estimates of observation quality (e.g., estimated distance to the trap, percent cloud cover, and overall observation quality) though our sample size many not have been adequate to fully assess these potential covariates. The technique’s inaccuracy may be due to observers’ inability to distinguish subtle colour differences between yearlings and two-year-olds. Trauger (1974) described the colour for yearlings as dark brown, olive brown and light olive brown versus light olive brown and olive yellow for two-year-olds (i.e., overlapping). This overlap in colour could explain the disagreement that occurred between observers handling both known-age and trapped females. Additionally, Trauger (1974) also suggested that within-season eye-colour changes may occur, especially in these age classes; and could also explain our discrepancies. If we had chosen to classify female scaup aed from a distance into ≤ two-year-olds and ≥ three-year-old categories, we might have increased our age classification success. However, the age categories that we chose represented both a change in eye colour and a biologically important change in female reproductive performance; yearling female diving ducks (including Aythya spp.) typically are less likely to nest during poor habitat conditions, have smaller clutches, lower nest success, and lower renesting rates than older females (Alton 1984; Serie et al. 1992; Blums et al. 1997; Hohman and Eberhardt 1998; Woodin and Michot 2002).

Sex bias

We found a male capture bias for decoy traps compared to the local population of males observed during surveys. Similarly, Grand and Fondell (1994) and Guyn and Clark (1999) decoy trapped 4 to 10 times more male Northern Pintails than females. Anderson et al. (1980) also captured more male than female scaup using decoy traps but captured more female Canvasbacks (Aythya valisineria) and Redheads (Aythya americana) than males. They suggested this was due to a greater proportion of unpaired male scaup than Canvasbacks or Redheads in the area and because of species’ behaviour differences. June breeding survey data for the YKSA indicated the majority of males were paired (paired = 192, unpaired = 64 in 2000; paired = 190, unpaired = 81 in 2001, J. E. Hines, CWS, unpublished data). As these surveys occurred during the end of the trapping period, the estimate for unpaired males may be biased low for the entire trapping period. However, we suggest that behaviour of scaup (i.e., largely nonaggressive, social, common mate changes during early breeding season; Austin et
Figure 1: Age distribution of adult and yearling female Lesser Scaup trapped on the Yellowknife Study Area, May and June 2000 ($n = 21$) and 2001 ($n = 7$), as determined by in-hand and distant eye-colour aging technique. Black bars indicate adults and grey bars indicate yearlings.

Figure 2. Percentage of Lesser Scaup estimated from a June breeding survey and decoy-trapping on the Yellowknife Study Area, May and June 2000 and 2001. Black bars indicate females and grey bars indicate males.
al. 1998) may also be important in explaining sex trap bias than male pair status.

Body condition and age bias associated with decoy traps

Pass- and jump-shooting are methods often used to collect waterfowl specimens to avoid bias associated with other methods including decoying, baiting or calling (Greenwood et al. 1981; Heitmeyer et al. 1993; Anteau and Afton 2004; this study). Although it is possible that infliction of injury to individuals may be more susceptible to pass and jump-shooting (e.g., if larger or smaller-bodied birds are more likely to survive crippling injury and escape recovery; if birds of a certain size class are more likely to fly along wetland edges where hunting risks may be greater), most shot birds were recovered (>80%) and we believe the method likely provides a more representative sample of local populations than other sampling techniques. Decoy-trapped females were lighter than shot females after accounting for temporal effects and ingesta mass. The difference was more pronounced in 2004, when females generally were lighter than in 2003, possibly due to a late spring thaw (Environment Canada 2004*) which may have reduced food availability (Devink et al. 2008). We suspected the mass difference between methods was due to a greater proportion of yearlings or poorer quality females in the decoy-trapped sample, but could not test this hypothesis. Ryan (1972) and Anderson and Warner (1969) found yearling scaup were lighter and smaller (respectively), but we were unable to detect differences in female weight between age classes. These potential age and body condition biases should be an important consideration for research assuming an unbiased sample of the population.

The trap and age estimation biases we report likely transcend species (e.g., scaup, Rogers 1964; Canvasback, Redhead, and scaup, Anderson et al. 1980; Northern Pintail, Grand and Fondell 1994; Guyn and Clark 1992; Ring-necked Pintail, Grand and Fondell 1994; Guyn and Clark 1992; Wood, Grand and Fondell 1981; Brown-headed Cowbirds (**Molothrus ater**), Dufour and Weatherhead 1991) where aging is more difficult and age-specific capture bias is more difficult to determine. We recommend that researchers using decoy traps recognize that age, condition, and sex bias likely occur, and acknowledge this during analysis and reporting. We do not recommend using the eye-colour change technique to age female scaup from a distance.

Acknowledgments

We are especially grateful to J. E. Hines for providing YKSA breeding pair survey data. We are also grateful to K. Bourassa and S. Haszard for their assistance in trapping and aging female scaup, and G. Mack, W. Davis, and H. Remenda for their assistance in collecting and dissecting scaup. The authors thank the Northern Scientific Training Program, Ducks Unlimited Canada, Natural Sciences and Engineering Research Council, Delta Waterfowl, and the Canadian Wildlife Service, Yellowknife, for providing financial and logistical support during the field season. The Canadian Wildlife Service, Saskatoon, and University of Saskatchewan provided logistical support during manuscript preparation. Also, thanks to A. J. Erskine for valuable suggestions which greatly helped improve the manuscript.

Documents Cited

Literature Cited

Received 8 November 2005
Accepted 14 July 2009
APPENDIX 1. Table of models considered in statistical analysis (and compared on basis of AICc values) for (a) determining if observation variables (overall observation quality, distance from observer to trap, percent cloud cover) had an influence on an observers’ ability to correctly distance age female scaup and (b) determine if collection variables (collection method, day, year) had an influence on ingesta-free mass of female scaup.

<table>
<thead>
<tr>
<th>a) MODEL</th>
<th>n</th>
<th>K</th>
</tr>
</thead>
<tbody>
<tr>
<td>dist</td>
<td>28</td>
<td>3</td>
</tr>
<tr>
<td>cloud</td>
<td>28</td>
<td>3</td>
</tr>
<tr>
<td>avqual</td>
<td>28</td>
<td>3</td>
</tr>
<tr>
<td>cloud, avqual</td>
<td>28</td>
<td>4</td>
</tr>
<tr>
<td>avqual, dist</td>
<td>28</td>
<td>4</td>
</tr>
<tr>
<td>avqual, dist, cloud</td>
<td>28</td>
<td>5</td>
</tr>
<tr>
<td>cloud, dist</td>
<td>28</td>
<td>4</td>
</tr>
<tr>
<td>cloud, avqual dist*avqual</td>
<td>28</td>
<td>5</td>
</tr>
<tr>
<td>avqual, dist, cloud, dist*avqual</td>
<td>28</td>
<td>6</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>b) MODEL</th>
<th>n</th>
<th>K</th>
</tr>
</thead>
<tbody>
<tr>
<td>method year day</td>
<td>102</td>
<td>5</td>
</tr>
<tr>
<td>method year</td>
<td>102</td>
<td>4</td>
</tr>
<tr>
<td>method day</td>
<td>102</td>
<td>4</td>
</tr>
<tr>
<td>year day</td>
<td>102</td>
<td>4</td>
</tr>
<tr>
<td>method</td>
<td>102</td>
<td>3</td>
</tr>
<tr>
<td>day</td>
<td>102</td>
<td>3</td>
</tr>
<tr>
<td>year</td>
<td>102</td>
<td>3</td>
</tr>
<tr>
<td>method year day method*year</td>
<td>102</td>
<td>6</td>
</tr>
<tr>
<td>method year method*year</td>
<td>102</td>
<td>5</td>
</tr>
<tr>
<td>year day year*day</td>
<td>102</td>
<td>5</td>
</tr>
<tr>
<td>method year day day*method</td>
<td>102</td>
<td>6</td>
</tr>
<tr>
<td>method day day*method</td>
<td>102</td>
<td>5</td>
</tr>
<tr>
<td>method year day methodyear yearday</td>
<td>102</td>
<td>7</td>
</tr>
</tbody>
</table>