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To more easily and non-invasively monitor urban Eastern Screech-Owl populations, we
developed a method of distinguishing individual owls using their calls. A set of seven
variables derived from recordings of ‘bounce’ calls taken from 10 known (either free-
ranging birds recorded at a single site on a single night or identifiable captive owls) owls
was tested using a model-based clustering analysis (Mclust) as a method of discriminating
individual owls. The cluster analysis correctly classified these calls with 98% accuracy.
A second set of calls from nine owls was used to further test the method and correctly
classified 84% of the calls using the same variables. Four owls were recorded repeatedly
from 2008 to 2010 to determine the extent to which calls changed over time; the cluster
analysis correctly assigned 89% of the calls to the correct owl regardless of the year the
recordings were made. Based on these results, we are confident that the Mclust analysis can
be used to reliably and safely estimate abundance and survival of Eastern Screech-Owls
within the time frame of a few years and of population sizes ,15 owls.

Keywords: cluster analysis; Eastern Screech-Owl; Megascops asio; spectrograms;
vocalization analysis

Introduction

The Eastern Screech-Owl (Megascops asio) is a small raptor that inhabits mixed-

hardwood forests in the United States and southern Canada east of the Rocky Mountains.

This species can tolerate some human development and can be found in suburban and

urban parks, golf courses, and other semi-developed greenspaces (Gehlbach 1995).

Screech-Owls are one of the few raptors that can persist in small urban parks (Lynch and

Smith 1984; Smith and Gilbert 1984; Gehlbach 1995), and managers would benefit from

knowledge about their survival rates and small-scale habitat use in these areas. As part of a

larger study on urban Screech-Owls in the New York City (NYC) metropolitan area, we

sought to develop a non-invasive method to identify and monitor individual Screech-Owls

to estimate abundance and adult survival.

Screech-Owls are difficult to trap and there are concerns regarding the behavioural

effects of telemetry (Gehlbach 1994). They have been monitored successfully via nest boxes

for long-term studies in Texas (Gehlbach 1994) and Ohio (VanCamp and Henny 1975), but

daily sampling of such boxes can be time-consuming and when we attempted such a survey

ISSN 0952-4622 print/ISSN 2165-0586 online

q 2012 Taylor & Francis

http://dx.doi.org/10.1080/09524622.2011.651829

http://www.tandfonline.com

*Corresponding author. Email: cnagy@gc.cuny.edu

Bioacoustics

iFirst article, 2012, 1–14

D
ow

nl
oa

de
d 

by
 [

ch
ri

st
op

he
r 

na
gy

] 
at

 0
8:

55
 2

0 
M

ar
ch

 2
01

2 

http://dx.doi.org/10.1080/09524622.2011.651829
http://www.tandfonline.com


in NYC we did not capture a sufficient number of owls. Screech-Owls defend territories

throughout the year, especially from spring through late summer (Ritchison et al. 1988), and

like many other owls announce their presence to rivals via vocalizations. They also attract

mates and communicate to mates and offspring via frequent vocalizations, and will readily

respond to call-playback broadcasts (Lynch and Smith 1984; Dorn and Dorn 1994;

Bosakowski and Smith 1997). If a method of identifying individual Screech-Owls via

vocalization analysis could be developed, then current call surveys could yield mark-

recapture data as well as site occupancy information.

Attempts at developing a method to discriminate individuals based on vocalizations has

been successful in numerous species of birds (Corncrakes Crex crex: Peake et al., 1998;

Barred Owls Strix varia: Freeman 2000; Wood Owls Strix woodfordii: Delport et al. 2002;

Great Bitterns Botaurus stellaris: Gilbert et al. 2002; Western Screech-Owls Megascops

kennicottii: Tripp and Otter 2006; Woodcock Scolopax rusticola: Hoodless et al. 2008;

Willow Flycatcher Empidonax trailii extimus: Fernandez-Juricic et al. 2009; summarized

by Terry and MacGregor 2002) as well as a few mammals (male Fallow Deer Dama dama:

Reby et al. 1998; Swift Fox Vulpes velox: Darden et al. 2003; Wild Dog Lycaon pictus:

Hartig 2005). If a reliable method of discerning individuals based on their vocalizations can

be found, researchers can non-invasively monitor otherwise cryptic or difficult-to-sample

species, often for a fraction of the cost, effort, and negative effects associated with other

methods (Terry et al. 2005; Hoodless et al. 2008; Fernandez-Juricic et al. 2009). To be truly

effective, however, the vocalizations must be of consistent form so that a set of variables can

be repeatedly measured from them. These variables should exhibit low within- relative to

among-individual variation (Terry et al. 2005). In addition, an animal’s vocalizations (and

derived variables) should ideally stay consistent over time so that individuals can be tracked

over many years (Delport et al. 2002; Terry and MacGregor 2002; Terry et al. 2005).

To develop and test a method to census and monitor Screech-Owls with no previous

knowledge regarding abundance, we used calls recorded from captive owls housed at

rehabilitation clinics and free-living (i.e. wild) owls sampled in disparate locations to build

a large set of recordings of ‘known’ individual owls. We measured a number of variables

from the ‘bounce’ call (Cavanagh and Ritchison 1987; Gehlbach 1995) and assessed their

usefulness as individual markers. Using a model-based cluster analysis, we classified the

recordings from half of the owls, and then re-tested the analysis on the other half using the

same variables. We then clustered the recordings from a subset of owls that were recorded

over the course of 2 or 3 years to determine the extent of change in calls over time.

Methods

Eastern Screech-Owls are typically thought to have two calls that are used as broadcast

vocalizations. The ‘whinny’ call is a territorial call and general alarm call (Cavanagh and

Ritchison 1987; Gehlbach 1994) and can be quite variable even within a single bout

(Figure 1A). The ‘bounce’ call generally consists of a series of quickly repeated notes on a

steady pitch. It is also used as a territorial call as well as communication between mates and

between parents and offspring (Cavanagh and Ritchison 1987; Gehlbach 1994). Thus, we

thought the bounce call would be the most likely to contain information that was individual-

specific, as also recommended by Cavanagh and Ritchison (1987). While gathering and

analysing our recordings, we found that there appeared to be two forms of the bounce call: a

‘long bounce’ which could range from approximately 5 seconds to as long as 45 seconds and

was delivered at a steady note rate and frequency (Figure 1B); and a ‘short bounce’

(Figure 1C) which was approximately 2–4 seconds long and had three distinct phases where

2 C.M. Nagy and R.F. Rockwell

D
ow

nl
oa

de
d 

by
 [

ch
ri

st
op

he
r 

na
gy

] 
at

 0
8:

55
 2

0 
M

ar
ch

 2
01

2 



the note length and the time between each note changed. The first and third phases had

substantially faster note rates than the middle (second) phase, and the phases could be easily

identified visually on a spectrogram and/or by listening to the call at 0.4 speed. Occasionally

the frequency of the short bounce changed slightly from phase to phase.

In our experience, the long bounce was used less often than the short bounce in

response to broadcast surveys. If an owl was heard calling independently (i.e. not in

Figure 1. Sample spectrograms of whinny (A), long bounce (B), and short bounce (C) calls of
Eastern Screech-Owl. Selections 1, 2, and 3 in C represent the three phases of the call.
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response to our broadcasts) it always vocalized long bounces. When an owl used long

bounces in response to our broadcasts, in most cases they eventually switched to a short

bounce. Also, when we observed owls calling to fledglings in the late spring, only short

bounces were used. Thus, because the different phases of the short bounce would allow

more variables and more variability to be measured, and because of the use of the short

bounce in parent-offspring communication and in response to our broadcasts, we thought

the short bounce had the best potential as an individual identifier and as a tool to monitor

Screech-Owls via call-playback surveys.

Three sets of Eastern Screech-Owls were recorded during this study. The first set of ten

owls was recorded between April and December 2008 and was used for the initial model

development (‘build set’). Six of these were free-living owls recorded at parks and

preserves in New York State: Mianus River Gorge Preserve, Bedford; Ward Pound Ridge,

Pound Ridge; Harriman State Park, Rockland and Orange Counties; and Saxon Woods

Park, White Plains. In these cases we only used recordings from one owl at each site, or

recordings from two owls that were recorded simultaneously, to ensure that each free-

living owl was in fact a separate individual. The remaining four owls were permanent

captive birds at rehabilitation centres in New York, New Jersey, and Pennsylvania and

thus could be identified. The second set of nine owls (‘test set’) was recorded in 2008 and

2009 to test the method on independent recordings. Two of the captive owls in the build set

were re-recorded 3 months later in the same season and used in the test set. The six free-

living owls in the test set were recorded at the Mianus River Gorge Preserve and

Riverdale, Van Cortland, and Inwood Parks, NYC. In addition, we were able to record four

owls repeatedly from 2008–2010 to determine if owls’ calls changed across years (‘multi-

year set’). One of these, a free-living owl, was recorded in June 2008, April 2009, and June

2010. We were reasonably certain that this owl was a single individual because of the

reliability with which we could find it and elicit calls at the same location and the

distinctive timbre of its calls (this owl was actually the inspiration for investigating this

method). Two captive owls were recorded in May 2008, December 2008, December 2009,

and one from this pair was recorded again in October 2010 (the second died in early 2010).

A final captive owl was recorded in December 2009 and November 2010. Overall, we

recorded 265 calls from 17 owls: 10 unique owls were used in the build set, seven unique

owls plus new calls from two build set owls were used in the test set, and two owls from the

build set and two owls from the test set were used in the multi-year set.

Captive and free-living owls were recorded after dark using a Sennheiser ME67

shotgun microphone with a foam windscreen and a Marantz PMD 661 digital recorder at a

44.1 kHz sampling rate. Vocalizations were elicited via broadcasting a mixture of

alternating bounce and whinny calls (Stokes et al. 1997) with a portable CD player. The

entire bout was recorded and we used as many calls from each bout as possible. Some calls

were censored if background noise (car traffic, airplanes, trains, police sirens, other

wildlife, etc.) made it impossible to measure frequency or note variables. We converted all

recordings to spectrograms and measured variables on usable short bounce calls using

Raven 1.3 (Cornell Lab of Ornithology 2008). The discrete Fourier transform (DFT) used

by Raven 1.3 to generate spectrograms from waveforms must be parameterized by a DFT

size that determines the number of discrete frequency-amplitude measurements plotted on

the spectrogram from the waveform. This value was held constant at the highest value of

65,536 samples (0.732 Hz grid size). Spectrogram transformation also requires a

parameter called window size that determines how precisely the spectrogram will measure

frequency, i.e. the bandwidth of the frequency filters. Frequency changes less than the

chosen bandwidth will not be discernible by the DFT. There is a trade-off between
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frequency and time resolution: a small window size will provide high resolution on the

temporal scale and low frequency resolution, while a large window will provide high

frequency but poor temporal resolution (Charif et al. 2008). We tested three common

window sizes with our build dataset to determine which was optimal for discriminating

owls. To do this we measured all frequency-based variables from spectrograms built with

windows of 256, 512, and 1024 samples. Temporal variables were measured directly on

the waveform when possible or on the smallest window size.

We measured the number of notes, duration, centre frequency (CF; the frequency that

divides the call into two frequency intervals of equal energy), first quartile frequency

(1QF; the frequency that divides the call into two intervals that contain 25% and 75% of

the energy in the call), third quartile frequency (3QF; the frequency that divides the call

into two intervals that contain 75% and 25% of the energy in the call), the interquartile

range (the frequency difference between 3QF and 1QF), and the note rate (NR). These

measurements were taken on the entire call and each of the three phases of the short

bounce. We also calculated the proportion of total notes and the proportion of total

duration in each phase of the short bounces (28 variables in total). As an initial index of the

amount of variation within individuals compared to the variation amongst individuals, we

calculated the proportion for individuality coding (PIC; Sokal and Rohlf 1995), which, for

a given variable, is the coefficient of variation for the total set of measurements divided by

the average of the coefficients of variation for each individual. If the ratio of these CVs is

greater than 1, then there is likely more variation amongst individuals than there is within

them, and the variable can potentially be used as a predictor of individual identity

(Robisson et al. 1993). Within-owl CV was calculated by (SDi/x̄i) £ (1 þ 1/4ni) £ (100),

where SDi, x̄i, and ni are the standard deviation, means and number of calls for owl i,

respectively. Total CV for the entire sample was calculated by (SD/x̄) £ 100. PIC was

calculated by total CV divided by the average within-owl CV (Sokal and Rohlf 1995;

Charrier et al. 2004).

Owls called at approximately 650 Hz (centre frequencies ranged from 516.4 to

1051.8 Hz across all owls) and 14.5 notes/second. After eliminating uninformative

variables first with PIC and then iteratively to maximize cluster accuracy with the build

set, the final clustering variables (regardless of choice of window size) were centre

frequency (CF), first- and third-quartile frequencies (1QF and 3QF), the note rate of the

entire call (NRall), and the note rates for the each call phase (NR1, NR2, and NR3).

These variables were standardized and entered into a model-based cluster analysis

using the Mclust package (Fraley and Raftery 2007) for R. This agglomerative

clustering method considers clusters (in this case, individual owls) as multivariate

normally distributed components in a mixture, and can estimate the total number of

clusters (G) by finding the maximum likelihood estimate for G given a range of possible

clusters. Models are then ranked with Bayesian Information Criterion (BIC) to

determine which model best fits the data without overfitting. In addition, models can be

parameterized to allow for varying volumes, shapes, and orientations among clusters

(Fraley and Raftery 2007; Xu and Wunsch 2009), although this adds additional

parameters to the model and thus penalizes the model’s BIC. We did not use priors for

modelling (Fraley and Raftery 1998; Fraley and Raftery 2007). Since we were

interested in a method that would estimate the number of animals from a set of calls

without any prior knowledge of G, an approach that provided estimates of G and

associated likelihoods as well as assigning all observations to clusters was necessary.

Group membership likelihoods for each observation were also calculated to assign

observations (calls) to clusters (owls).
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The final set of spectrogram variables was reduced to the set that gave the highest

accuracy via Mclust in estimating G and assigning individual calls to the correct cluster.

When these variables were determined using the build set, the same variables were

measured from calls of the test set (using the optimal spectrogram window size in Raven

1.3) and entered into the cluster analysis to determine if the variables performed well on an

independent set of recordings (i.e. was our variable set generally applicable, or specific

only to data in the build set?). Next, to informally examine the maximum number of owls

that could be discriminated, we ran a pooled dataset of the entire build and test sets

together (17 owls in total). In particular, we were interested in whether the calls from the

two owls found in both the build and tests sets would cluster together despite being

recorded at different times in the season in this large dataset.

Lastly, the calls from the four owls that were recorded repeatedly across years were

entered as a third dataset. In this analysis we constrained the model structure to components

with equal shape and volume. Calls that were quite different from each other yet occupied

otherwise ‘sparse’ areas of the dataspace (e.g. the high or low extremes) might cluster

together if clusters were allowed to be very large or take alternate shapes. Restricting

volume and shape ensured that the Mclust analysis would not group calls together that were

in reality quite different from each other. The trade-off for this constraint was to risk over-

estimating the number of owls (clusters) by assuming owls have similar variation in calls. If

the respective calls from each of these owls clustered together across years, then we could

have some confidence that the method could be used to track owls from year to year (at least

to a maximum of three years). If this was not the case, the method might still be useful in

obtaining a ‘snapshot’ abundance from year to year but could not be used to monitor

individual owls (e.g. for annual survival estimation) over long time periods.

Results

The cluster analysis, using data measured from spectrograms with a 256 sample window

size, correctly assigned all but two of the 88 calls (98%) in the build set to the correct

owl using a model with ellipsoidal components of equal volume, shape, and orientation

(‘EEE’ Table 1, Figure 2). The other two spectrogram window sizes did not perform as

well: data measured with a window size of 512 samples yielded a BIC-selected best model

with the correct number of clusters (10) but used a more complicated cluster structure with

variable volume and orientation (‘VEV’). Measuring call variables with a window of 1024

samples yielded a BIC-selected best model with 20 clusters (twice as many owls as there

actually were). Subsequent measurements were therefore derived from spectrograms with

window sizes of 256 samples.

The analysis using the test set selected the same model form of ‘EEE’ but was slightly

less accurate (Table 1), with a BIC-selected best model of 10 components (Figure 3). The

correct number of owls was nine, not 10; however, the extra cluster was made up of only

two observations from two different owls and thus could easily be identified and removed

by looking at the classifications of individual calls. The model correctly classified 53 out of

63 calls (84%). When all calls from both sets were pooled together, they were classified

correctly with 84% accuracy, again with an ‘EEE’ model structure. The model properly

classified the two re-sampled owls that were present in the original build and test sets.

However, the method predicted one extra cluster (18 owls) than was truly present,

similarly to the test set alone.

Of the 114 calls from the four owls recorded in 2008–2010, 102 were clustered with

the correct owl (89%; Tables 1 and 2) using a model with ellipsoidal components of
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consistent shape and volume but variable orientation (‘EEV’; Figure 4). The calls from

each owl seemed to change only slightly from year to year, with some indication that calls

get lower in pitch and somewhat slower with time.

Discussion

The Mclust clustering algorithm performed well, clustering two independent sets of data

and discriminating individual owls over a few years. Vocal individuality had been found for

a number of owl species (Galeotti and Pavan 1991; Galeotti et al. 1993; Freeman 2000;

Delport et al. 2002; Tripp and Otter 2006) and this is not surprising as aural communication

and identification would likely be important for nocturnal birds. The classification

Table 1. BIC scores for initial (build set) model-based clustering of Eastern Screech-Owl bounce
calls, New York City, Long Island, and Westchester, NY, and Millington, NJ, 2008–2010.

Dataset Modela db Gc BICd Log-likelihood

Build EEE, 10 clusters 7 10 336.89 403.55
EEE, 11 clusters 7 11 316.22 410.79
EEE, 12 clusters 7 12 302.11 421.31

Test EEE, 10 clusters 7 10 284.81 179.25
EEE, 11 clusters 7 11 2109.77 183.34
EEE, 12 clusters 7 12 2116.99 196.31

Multi-year EEV, 4 clusters 7 4 2611.91 217.05
EEV, 3 clusters 7 14 2677.98 2118.76
EEV, 6 clusters 7 11 2734.86 29.84

a EEE indicates a model with ellipsoidal components of equal shape, volume, and orientation; EEV indicates a
model with ellipsoidal components of equal shape and volume and variable orientation;
b number of dimensions (variables);
c number of components (clusters) estimated by the model;
d BIC ¼ (2* Log-Likelihood) – (k) * log(n); see Fraley and Raftery 2007:
for EEE models, k ¼ (G * d) þ (G 2 1) þ [(d * (d þ 1)]/2;
for EEV models, k ¼ 1 þ (d 2 1) þ G * ((d*(d 2 1))/2)
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Figure 2. Final clusters and covariance ellipses of the build set of 10 Eastern Screech-Owl short
bounces calls plotted along two of the seven variables used in the analysis. Cluster assignments (left)
are based on the BIC-selected best model with 10 components. Black dots in uncertainty plot (right)
represent observations in the 0–75% quantile of uncertainty; square dots represent observations in
the 75–95% quantile, and triangular dots are observations in the 95% quantile of uncertainty.
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accuracies of this method (85–98%) are comparable to other vocalization-based methods

for other species (Freeman 2000; Delport et al. 2002; Gilbert et al. 2002; Tripp and Otter

2006; Hoodless et al. 2008; Fernandez-Juricic et al. 2009). Traditionally, discriminant

function analysis has been used to categorize observations into groups, but the groups must

be known and fixed (e.g. male/female, known species or subspecies, age class, etc.). For

wildlife monitoring or abundance estimation, discriminant function analysis is thus of

limited use because, first, the number of groups is often unknown and, second, the groups

(individual animals) being measured disappear and appear over time as individuals die or

emigrate and are born or immigrate. Using discriminant function analysis, observations

from new individuals would be assigned to the most similar starting cluster, not assigned to a

new group. Model-based clustering allows for classification of observations as well as

maximum likelihood estimation of the number of groups.

We were initially surprised that the smallest spectrogram window size provided the most

useful data, as greater window size should provide more precise frequency measurements.

However, when we compared measurements taken across the three window sizes, only Q1F

and Q3F appeared to vary substantially (Table 3). As window size increased, the quartile

frequency measurements moved closer to the centre frequency. This may have caused data

Table 2. Cluster designations, number of calls per owl/season, and number of calls misclassified
per owl/season using a 4-cluster model with ellipsoid clusters of consistent shape and volume and
variable orientation (EEV), New York and New Jersey, 2008–2010.

Owla Spring ‘08b Winter ‘08b Spring ‘09b Winter ‘09b Spring ‘10b Winter ‘10b

RT1 (C) A(2, 0) A(9, 0) NS A(17, 0) NS NS
RT2 /(C) B(26, 0) B(10, 0) NS B(5, 0) NS B(3, 0)
SC1 (C) NS NS NS C(10, 4) NS C(6, 2)
VC1 (F) D(4, 0) NS D(16, 1) NS D(6, 3) NS

a ‘C’ indicates a captive owl; ‘F’ indicates a free-living owl;
b Cluster designation (total number of calls, number of misclassified calls); NS, the owl was not sampled in that
season.
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Figure 3. Final clusters and covariance ellipses of the test set of nine Eastern Screech-Owl short
bounces calls plotted along two of the seven variables used in the analysis. Cluster assignments (left)
are based on the BIC-selected best model with 10 components. Black dots in uncertainty plot (right)
represent observations in the 0–75% quantile of uncertainty; square dots represent observations in
the 75–95% quantile, and triangular dots are observations in the 95% quantile of uncertainty.
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points to ‘constrict’ across these two frequency variables and thus pull away from otherwise

similar points. This could lead to a greater number of clusters being predicted by the Mclust

routine since only the most similar points remained close to each other in multidimensional

space. Indeed, the top two models using the largest window size had 20 and 19 clusters

(although the 10 cluster ‘EEE’ model had the third best BIC). When the classifications given

by the 20-cluster model were examined, the extra clusters were in fact wholly contained

within individual owls’ bouts.

We were particularly concerned with developing a method that uses variables that can

be reliably measured even in sub-optimal recording conditions, namely near roads, major

highways and busy NYC flyways. In a field setting, where background noise and

inconsistent recording conditions are a reality, measures such as call duration, raw number

of notes, or upper harmonics are often unreliable because they can be recorded poorly. A few

notes at the beginning or end of a call may not be sufficiently recorded, so call duration,

numbers of notes, and measures taken on a specific start or ending note can vary not by

individual animal but by recording conditions. Often, animals may not be close enough for

the recording equipment to pick up harmonics and other faint characteristics. Note rate,

however, requires only a few notes in each component of the call, and a frequency measured

across the total duration of the call can be calculated reliably with only the middle and the

loudest portion of the call – provided the call generally remains at a steady frequency, as is

Table 3. Frequency measurements (mean and SD) using three different window sizes for
spectrogram production of calls from 10 eastern screech owls, New York and New Jersey, 2008– 2010.

Window size
(samples)

Centre frequency
(Hz)

First quartile frequency
(Hz)

Third quartile frequency
(Hz)

256 644.1 ^ 100.6 569.2 ^ 99.8 719.9 ^ 101.7
512 644.8 ^ 100.5 603.7 ^ 99.6 685.3 ^ 101.8
1024 645.4 ^ 100.9 619.7 ^ 101.2 670.1 ^ 100.5
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Figure 4. Final clusters and covariance ellipses of the multi-year set of four Eastern Screech-Owl
short bounces calls plotted along two of the seven variables used in the analysis. Cluster assignments
(left) are based on the BIC-selected best model with four components. Black dots in uncertainty plot
(right) represent observations in the 0–75% quantile of uncertainty; square dots represent
observations in the 75–95% quantile, and triangular dots are observations in the 95% quantile of
uncertainty.
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the case with Screech-Owls’ bounce calls. Additionally, the use of energy-based frequency

measures available in the Raven software was more accurate – compared to measuring the

maximum, middle, and minimum by hand – because small discrepancies in the spectrogram

selections of call boundaries do not substantially affect the resulting frequency calculations.

We were able to distinguish 10 and nine individual owls with .85% accuracy. As

more individuals are added to an analysis, one would expect greater and greater amounts

of overlap between clusters, and eventually discrimination among individuals would

become difficult. When the two datasets were pooled (17 owls total), the method did

cluster the two identical owls together across separate bouts, but the overall classification

rate dropped below 85% and the number of clusters was over-estimated by one owl. This

suggests that clusters may begin to overlap excessively around 15 or 16 owls. However,

any identification method need only have the capacity to discriminate up to the maximum

number of individuals that would reasonably be expected to inhabit an area of interest. For

urban parks in NYC with rather small, fragmented woodlands (e.g. the wooded areas of

Inwood, Riverdale, and Van Cortland are 55 ha, 45 ha, and 362 ha, respectively), one

could expect to encounter more than 10–15 owls in only the largest sites. Proper

classification will also depend on the particular individuals that are sampled. Most centre

frequencies hovered around 570–620 Hz, with two individuals calling above 950 Hz on

average. Owls that call at very high frequencies will be more distinguishable than those

who call within the ‘average’ range of 570–620 Hz. Cavanagh and Ritchison (1987)

observed that female eastern screech owls generally call at higher frequencies and at

slower rates than males. Unfortunately, we did not know the sexes of the owls we

recorded. However, our frequencies tended to be lower on average (654 Hz) than both

males (721 Hz) and females (823 Hz) in central Kentucky, and those owls with higher

frequency calls tended to sing faster (in contrast to Cavanagh’s and Ritchison’s [1987]

findings). Some species have been known to modify their calls to sound more (MacGregor

and Krebs 1989) or less like their neighbours (Walcott et al. 2006) and/or to stand out from

background noise in urban areas (Warren et al. 2006; Wood and Yezerinac 2006). Future

research can determine if Eastern Screech-Owls that live close to one another exhibit more

or fewer differences than would be expected by chance or if urban owls seem to shift their

calls relative to their rural counterparts. While centre frequency appeared to be the most

important single factor to determine individuality (PIC ¼ 3.17, see Appendix), the

specific combinations of phase-specific note rates was important, particularly between

NR1 and NR3.

In within-season analyses, ‘EEE’ models (with ellipsoidal shapes and equal volumes

and orientations) were always selected. The selection of an ‘EEV’ model – with varying

component orientations – in the multi-year analysis suggests that vocalizations were

beginning to diverge from their initial measurements. While the analysis was able to

account for this variation, researchers should be aware that (not surprisingly) owls’ calls

do not stay completely consistent for their entire lives. Screech-Owls lived on average for

4.1 ^ 2.8 (SD; median 2.6) years in Texas (Gehlbach 1994) and 3.1 ^ 2.6 years (SD;

median 2.0) in Ohio (VanCamp and Henny 1975) so a limit of approximately 3 years in

terms of call consistency is adequate for most owls. Still, since those owls that live longer

play a large role in recruitment rates over their lifetimes, monitoring long-lived individuals

would be important for population studies. We also caution others that our multi-year

dataset was rather limited, owing to the difficulty of finding captive owls that can be

recorded and identified for many years, and thus large populations may not be discernible

over time. However, one could potentially perform multiple analyses of data from

consecutive years and then link clusters across years. Any new owls that establish
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themselves in the study area should appear as new clusters, unlinked to any cluster in the

previous year. Alternatively, researchers could simply estimate total abundance each year

and compare these census counts to abundances derived from multi-year analyses. While

the latter is able to provide individual survival rates, annual census counts may be

analytically simpler and can still provide information on population trends and status.

The use of the short bounce for this method was based on a few factors. As stated

above, bounce calls seem to be used in behavioural contexts that would be expected to

require individually distinguishable characters (e.g. mate-mate and parent-offspring

communications). Second, they were the most common call recorded. However, since the

vast majority of our calls were elicited as a result of an artificial broadcast, Screech-Owls

may in fact use other calls more often, or call characters may change substantially in other

contexts. For example, occasionally an owl was heard calling before we began our

artificial broadcasts and these bouts consisted almost exclusively of long bounces only.

Thus, it is possible that short bounces are primarily used in aggressive territorial disputes

or courtship displays, and currently our method is untested using calls from other

behavioural contexts.

It would also be useful to find variables that could determine individuality using long

bounce and whinny calls, something we did not have the time or resources to pursue for

this study. Long bounces may be used in pair or parent-offspring communication as in the

short bounces but lack the phase-based variation of the short bounce. To develop a method

based on long bounces, reliable variables other than centre and quartile frequencies and

note rates will have to be found. Preliminary analyses of long and short bounces using only

the three frequencies and the note rate of the entire call (the only note rate measurable on

long bounces since they have no discernable phases) had poor discriminating power.

Development of a method based on whinny calls would probably be even more difficult: to

our own ears, we noted substantial variability in whinny durations, frequencies, and

general forms even within a single bout. However, if possible, using the three types of call

would allow additional verification of cluster classifications and should allow more

individuals to be discriminated.

Using vocalization analysis to monitor individuals has many advantages. Non-invasive

techniques such as this minimize the danger to study animals and can be used in urban areas

where project visibility is often high and public opinion regarding trapping and handling

local wildlife may be quite unfavourable (C.M. Nagy, pers. obs.). The cost of recording

equipment and analysis software ( , US$2,000 total) is less than the cost of a telemetry-

based study. The latter also has constant costs involved in replacing or refurbishing

transmitters, while a vocalization study has only the initial cost. Telemetry will still be

necessary if the study objectives require precise and numerous locations, however,

especially if one uses call-playback surveys – which draw owls to the researcher – to obtain

recordings. Mist netting and banding may be less expensive but can be more labour-

intensive and, without telemetry, usually cannot yield repeated samples of individuals

within a single season. For biologists and land managers with limited time and budgets – as

is usually the case among researchers studying urban wildlife and common, non-game

species – methods that can be performed on a small budget are often the only options.
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