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Abstract.—Variance of lifetime reproductive success is not a well-defined parameter; it is a
function of the way a life cycle is defined. Therefore, comparisons of such variance across
studies and taxa will only be valid if the life cycles employed are complete (i.e., an entire
generation), precisely defined (e.g., egg to egg or adult to adult), and identical. Given a well-
defined life cycle, we present methods for obtaining estimates of the variance of lifetime repro-
ductive success among individuals using demographic data. The estimates are based on the
assumptions of no selection and negligible covariance between life span and reproductive effort.
The techniques can be used to investigate the effects of alternate life histories on the distribution
of reproductive success in a population, as well as to obtain estimates of effective population
size. They may also provide a null model for investigations of selection. Some theoretical and
empirical results are presented. A method for obtaining confidence intervals for the estimates
is described.

There has been considerable interest in recent years in lifetime reproductive
success (LRS) and its distribution among members of a population. For example,
two volumes reviewing empirical data on reproductive success in natural popula-
tions have appeared (Clutton-Brock 1988; Newton 1989a). Theoretical reasons
for this interest are clear: differences in reproductive success among individuals
are the stuff of natural selection, the magnitude of the variance of LRS sets an
upper limit on the magnitude of selection (see, e.g., Arnold and Wade 1984,
Arnold 1986), and the ratio of variance to mean LRS affects the effective size of
a population (Crow and Kimura 1970). The latter has become considerably inter-
esting in computations associated with maintaining genetic variation in managed
populations of threatened species. In addition, there has been a resurgence of
long-term population studies associated with empirical questions in behavior and
sociobiology; examination of data from these investigations have led researchers
to consider patterns in the distribution of reproductive success among individuals
and the processes leading to them (Newton 19895, Partridge 1989).

It is quite difficult to measure LRS in natural populations. In small organisms,
such as many invertebrates, various stages of the life cycle may not be readily
visible to observers, or the individuals may be too small to mark and recapture.
For larger organisms, such as many vertebrates, individuals may still be too
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small to observe during part of their life cycle. Additionally, life cycles for some
vertebrates may be quite long compared to the average length of a field project.
Consequently, estimates of LRS, measured through a complete life cycle (e.g.,
recruited breeding adults per breeding adult) are usually not available for con-
structing the distribution of actual reproductive success in a population. Thus, it
would be useful to have a method for estimating this distribution, or its moments,
from data that are readily available.

In this article, we develop equations for estimating the variance of LRS from
commonly available demographic data. Naturally, assumptions are required. In
addition, we present some examples using data from natural populations and
discuss some general results. Finally, the robustness of the estimates is briefly
explored using simulations.

THEORETICAL CONSIDERATIONS

Our objective is to obtain estimates of the variance among individuals in life-
time reproductive success, V| rg, based on minimum data. There are few studies
of any organism in which a population has been studied for sufficient time and in
a sufficiently intensive fashion that lifetime values of reproductive success are
known for enough individuals to estimate the variance of the distribution. Never-
theless, it may be possible to obtain estimates of the magnitude of V| 5 based on
fewer data. Here we develop two approaches to this problem; first, we obtain an
analytical solution at the expense of making a number of restricting assumptions.
Second, we develop an exact solution that avoids some of these assumptions but
without a closed form; that is, this latter solution will be a deterministic computa-
tion of the convolution of distributions.

Analytical Solution

Consider the following: suppose that breeding adults have some distribution of
reproductive life span, with a mean X, and a variance V| . Further suppose that,
in any given year in which these individuals breed, there obtains a distribution
of reproductive success, which we will call fecundity, with a mean Xy and a
variance V. Now consider the production of offspring by an individual in this
population as a process in which a random number of offspring, F;, drawn from
the above distribution of fecundity, are produced each year, i, of the individual’s
reproductive life. The extent of that individual’s life is a random variable, L,
drawn from the distribution of reproductive life spans. Then the sum

L
> F
i=1

is itself a random variable, and the distribution of these sums is the distribution
of LRS of individuals in the population. Note that the sum is a random summation
of random variables; this type of stochastic process is known as a random sum.
If the F’s are independently drawn from a single distribution, and if they are
independent of L, then the mean and variance of this distribution are the mean
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and variance of LRS of the population, respectively, and have values
Xirs = XpX| (1)
and
Vigs = XV + X V. (2)

Equation (1) is derived by Papoulis (1965, eq. [8-58]) and stated by Feller (1968,
p. 301, problem 1). Equation (2) can be found explicitly stated in Feller (1968, p.
301, problem 1). It can be derived easily from equation (8-59) of Papoulis (1965)
using the definition of variance as the difference between the expectation of the
square of a random variable and the squared expectation of the same random
variable. Our equation (2) differs from that used by some authors (e.g., Brown
[1988]) in the treatment of a slightly different problem, that of variance parti-
tioning. This difference in approaches is discussed in the Appendix.

With the above assumptions, one could obtain an estimate of variance of LRS
given estimates of the mean and variance of reproductive life spans and reproduc-
tive success within years. Unfortunately, however, one often does not even have
the requisite estimates of reproductive success for a single year.

Variance of reproductive success will differ depending on which stage of an
organism’s life cycle is taken as a point of reference. Consider, for example, the
hypothetical organism in figure 1. Suppose that every adult in a population pro-
duces 10® gametes during its lifetime, 10> of which become eggs, 10 of which
become fledglings, and 1 of which becomes a breeding adult; then V| i, measured
as breeding adults produced by breeding adults, is zero. However, measured as
fledglings produced by fledglings, this variance is nine; as gametes produced by
gametes, the variance is even larger; for example, Vigs =~ 10® (i.e., 103> — 1
gametes produce zero gametes during their entire lives, but one produces 108).
Consequently, if estimates of V| g are to be compared among populations, taxa,
field studies, and so forth, the estimates must be obtained for a complete life
cycle and with reference to the same end points of that cycle.

With regard to equations (1) and (2), one ought to have estimates of fecundity
in terms of adults produced per adult or eggs produced per egg and so on. But
one often does not have such estimates of mean or variance of fecundity because
one rarely is able to follow individuals through an entire life cycle. Most estimates
of the distribution of fecundity will consist of numbers of eggs, hatchlings or litter
sizes, or fledglings or dispersers, per adult. Nevertheless, with some additional
assumptions, it may still be possible to obtain an estimate of V| gs.

Suppose one has an estimate of the mean and variance of some measure of
reproductive success for less than an entire life cycle, for example, fledged young
birds produced by adults during their lifetime. Because there is usually substantial
mortality between fledging and becoming a breeding adult in most species of
birds, these moments will be poor estimators of the mean and variance for a full
life cycle. However, one might assume that the mean LRS of a population should
be approximately two, rather than the estimate obtained for a partial life cycle,
for instance, fledglings, Xpgs. With such an assumption the corrected estimate of
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F16. 1.—Variance of lifetime reproductive success (V}gs) among individuals in a popula-
tion is a function of the chosen end points of the life cycle. Here every adult individual in a
hypothetical population produces 10? eggs that result in 10 fledglings and eventually one adult
and so on; V| rs among adults from generation to generation is zero. Since only one of 10
fledglings produces an adult that in turn produces 10 fledglings, V| g5 among fledglings is nine.

X gs IS two, or pXprg, Where, in this case, p = 2/Xpgs. A corrected estimate of
Virs can also be obtained through an extension of this idea.

Expressions (1) and (2) contain formulas for the mean and variance of LRS in
terms of the mean and variance of fecundity within a breeding season. Fecundity
must be measured as the production of individuals at the end point of the refer-
ence cycle. Thus, we need to obtain an expression for Xy and Vg in terms of a
combination of measures of fitness that are observable, coupled with subsequent
random mortality that reduces the expected X|ys to two; this must be accom-
plished in such a way that entire individuals live or die: the proper model for this
mortality—from point of observed measure of fecundity to recruited breeder—is
another stochastic process in which each individual lives or dies with a probability
p. This process can be viewed as a series of Bernoulli trials with mean

p= 2/XPRS
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and variance

As before, this process can be viewed as a random sum.

Consider the random variable M, measured fitness (e.g., clutch size), with
mean Xy and variance Vy, and the random variable §;, survival of individual i
from the measured stage of the life cycle to breeding status, with mean p and
variance p(1 — p). Then the sum

M
2.8

i=1

is the sum over the measured fitness of the random variable survival of each unit
propagule. This is the fecundity, as defined above, for that breeding season or
bout. Again as above, if we assume the survival probabilities of offspring are
independent of each other and of the litter size, then this stochastic process has
mean and variance

pXy and p*Vy + X,V,,

respectively. Substitution of these expressions in equations (1) and (2) leads to
overall formulas for the mean and variance of LRS in terms of observable vari-
ables, X, Vi, Xu and V), and a measure of survival rate, p, which can be
adjusted so that overall X, gg is two. In particular,

Xigs = PX1L XM 3)
and
VLRS = sz%/[ VL + pZXLVM + XLXM Vp . (4)

If one did have information on survival rate to adulthood, then p and V, ought
to be replaced by the appropriate empirical estimates of these two parameters.

Numerical Solution

A major restriction of these equations is the assumption that the distribution
of reproductive success is independent of age and that every individual starts
breeding at the same age. Neither of these may be true; in birds, for example,
fecundity frequently increases with age (Saether 1990). In a species such as the
lesser snow goose, first breeding may occur at ages two through four, and average
production of fledglings increases through age seven. Therefore, we developed a
computer program to obtain estimates of the distribution, and hence variance, of
LRS for such situations.

In this approach the exact distribution of offspring is found deterministically.
This is implemented by computing the distribution of offspring for individuals in
their first year of breeding using the appropriate fecundity schedule. The survival
schedule is consulted to obtain the fraction that die; the lifetime distribution of
fecundity of those dying is known and saved. The fraction that survive are in
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their second year of breeding; the appropriate fecundity schedule is used to appor-
tion their total fecundity over the first 2 yr. Then survival rate for the second year
is used to determine the fraction of these advancing to a third year of breeding and
the fraction whose lifetime fecundity is added to the distribution of fecundity of
those dying after the first year; this procedure is continued iteratively. Eventually,
the lifetime distribution of offspring is found for the entire cohort. Because the
distribution of offspring is usually in terms of eggs, fledglings, and so forth, Ber-
noulli trials must again be used to estimate reproductive success for an entire life
cycle. As above, survival of offspring can be adjusted so that a cohort just re-
places itself. This is done by taking the fraction of individuals producing N sub-
adult offspring and computing the proportion that would have had each of the N,
N — 1, N — 2, and so forth, possible numbers of adult offspring given the
necessary survival rate and a binomial expansion. Because a different fecundity
distribution may be used for each year of breeding and the fraction of individuals
breeding may be varied from zero to one, this approach allows more realistic
estimates of the distribution of lifetime fecundity than does the analytical ap-
proach. It also, however, requires more data. Once the lifetime distribution of
adult progeny is found, the variance can be computed.

RESULTS AND DISCUSSION

The equations derived above enable one to obtain estimates of variance among
individuals in LRS given information on survival rate, fecundity, and so forth.
However, two major assumptions are common to the analytical equations as well
as to the deterministic computation. First, because fecundity and life span are
sampled from single distributions, we assume that there is no selection among
individuals. Second, we assume that there is no covariance between survival rate
and fecundity or among fecundities in succeeding years. If significant selection
or covariances of this sort occur in natural populations, then there might be a
systematic bias in the estimates obtained using our methods. Whether the bias
would be positive or negative would depend on the sign of the covariance. A
positive covariance between survival rate and fecundity or among successive
fecundities across years is equivalent to differential selection (phenotypic or ge-
netic; see, e.g., Arnold and Wade 1984) among individuals. A negative covariance
would be interpreted as a cost of reproduction. Positive and negative covariances
would result in our equations underestimating and overestimating, respectively,
the true variance. We know of no compelling evidence for the generality of such
covariation in nature.

Following this line of reasoning, one might view our results as producing a
null, stochastic model (without selection), somewhat similar to an idea of Suther-
land (1987). Observed data on variance of LRS could be compared to that esti-
mated with our models, and inferences about selection might be made. Unfortu-
nately, however, large sample sizes would be necessary to achieve any power.
Some forms of selection (e.g., sexual) might be expected to increase variance of
reproductive success, but others, such as some forms of stabilizing selection,
could reduce it. In addition, our models also could be used to test for the types



VARIANCE OF REPRODUCTIVE SUCCESS 287

TABLE 1

OBSERVED AND ANALYTICAL ESTIMATES OF VARIANCE OF LIFETIME REPRODUCTIVE SUCCESS (V| gs) FROM
A LoNG-TERM STUDY OF A NATURAL POPULATION OF THE MEXICAN JAY (APHELOCOMA ULTRAMARINA)

DEMOGRAPHIC PARAMETERS

OBSERVED* ANALYTICAL
Lire CYCLE Vigrs Xt vt Xet VE Virs
Nestling to nestling 12.32 (4.84-21.07) 39 1.87 207 285 9.12
Breeding adult to breeding adult ~ 2.11 (1.07-3.29) 3.35 5.61 .29 41 1.86

* Bootstrapped 95% confidence interval in parentheses.
+ Mean and variance of reproductive life span.
t Mean and variance of fecundity.

of covariance between reproduction and life span discussed above. Again, one
might test for such effects using cases in which variance of LRS is known; the
observed variance could be compared to the variance predicted using the equa-
tions above. Such data also could be used to test all the various assumptions of
our equations. Unfortunately, few such data exist.

We were unable to locate any published examples of both actual distributions
of LRS through a complete, well-defined life cycle, as well as distributions of
year-to-year survival and yearly distributions of some measure of reproductive
success. A few long-term studies clearly involve such data (e.g., Clutton-Brock
1988), but published complete data sets are apparently few. However, we were
able to use unpublished data from a long-term (22-yr) study of behavior and
demography of a Mexican jay population from southeastern Arizona (Brown and
Brown 1981). A set of data was available that included life spans, yearly numbers
of nestlings produced, and yearly numbers of recruited breeders produced for
individuals from the population. From this single set of data we were able to
estimate the actual mean and variance of LRS for the jays, as well as the means
and variances of breeding life span and yearly fecundity. We were able to do this
for both a nestling-to-nestling life cycle and a breeding recruit—to—breeding recruit
cycle. From the estimates of the mean and variance of reproductive life span and
yearly fecundity, we computed an analytical estimate of Vg for comparison
with the observed value (table 1).

As discussed above, variance of reproductive success is a function of the life
cycle chosen as reference; for these data the nestling-to-nestling cycle encom-
passes approximately five to six times as much variance as the adult-to-adult
cycle. For both cycles, the analytical estimate of V| g underestimates the ob-
served variance but is well within the empirical 95% confidence interval obtained
by bootstrapping (1,000 times) over individuals. The magnitude of the underesti-
mation is 14% and 35% for the adult and nestling cycles, based on sample sizes
of 62 and 329, respectively. Although the sample for the nestling cycle is substan-
tial, it includes a large majority of nestlings that die long before obtaining breeding
status. Our results seem reasonably accurate, given a sample size of one study.
The bootstrap result suggests the underestimation is consistent with sampling
error; however, the result is also consistent with a moderate amount of positive
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FiG. 2.—Expected variance of lifetime reproductive success (Vjzs) for hypothetical popu-
lations as a function of varying survival rate and yearly fecundity distributions. Year-to-year
survival (§,) of breeding individuals decreases across the top; left, Type I survival schedule
with S, of 0.9; middle, Type II schedule with S, of 0.5; right, extreme Type II with S, of
0.2. Fecundity distribution within years becomes more skewed from top to bottom; top, all
individuals produce identical numbers of offspring; middle, 50% probability of complete nest
failure; bottom, 80% probability of nest failure. Probability of survival of offspring to adult-
hood is adjusted with Bernoulli trials so that E(LRS) = 2.

covariation in the population, involving survival rate and fecundity, as explained
above.

Given analytical equations for variance in reproductive success, one can inves-
tigate how different patterns of life expectancy and fecundity affect patterns of
this variance. For example, in figure 2 we examine the interaction of three more
or less realistic patterns of survival for vertebrate organisms with three patterns
of fecundity. From left to right across the top of the figure are life expectancy
distributions showing increasing mortality during the period of reproduction. The
first is an example of Deevey’s (1947) Type I survival curve; the second and third
are Type II curves (exponential distributions). On the ordinate are increasing
patterns, from top to bottom, of variance of within-year reproductive success. At
the top all individuals produce the same number of offspring; next is a bimodal
distribution with equal numbers of individuals succeeding and failing; at the bot-
tom a minority of the population produces all the offspring. These patterns might
apply to males of monogamous, mildly polygynous, and lekking species, respec-
tively. Binomially distributed survival was applied to the offspring so that all
combinations of patterns resulted in an expectation of two recruits per breeding
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individual. The corresponding variance among individuals in these theoretical
populations are shown in the figure. Variance of LRS increases as the distribution
of within-year reproductive success becomes heteroscedastic; this is most pro-
nounced for organisms with higher variance of survival rate. These results are
not counterintuitive but do illustrate how the analytical equations might be used
to investigate the effects of alternative life-history traits on, for example, effective
population size.

As a more empirically based example of the use of the analytical equations,
we present estimates in table 2 of variance of LRS for four species of birds with
varying life-history patterns. These results are based on data reported in the
literature from long-term studies of natural populations. In all cases, the variance
is for the life cycle defined as first-time breeding adult to first-time breeding adult.
Two of the species are extremely long-lived pelagic birds with single-egg clutches.
The other two are relatively short-lived species, but their ratios of variance to
mean annual fecundity differ strikingly. Interestingly, when mean productivity is
adjusted to two, the variances are rather similar for the four species. Thus, life-
history patterns this different do not greatly affect variance of lifetime reproduc-
tion. The expected variances, however, are approximately twice the mean repro-
ductive success—not consistent with a binomial or Poisson process.

It is straightforward to use the estimates of variance to compute effective popu-
lation size. For example, if the size of a population is approximately constant,
then

N, = 4N, — 4)/(Vigs +2)

(Crow and Kimura 1970, table 7.6.4.1, separate sexes). If N_, census size, is
large, then

NN, ~4/(Vigs +2).

For the prairie warbler data presented in table 2, V s was estimated as 4.45
when the average progeny number was 2.0. For this example, then, the ratio of
effective to census size is about 0.62; the effect of the demography and fecundity
schedules is to reduce the effective size of the population by 40%. Because the
variance used here was for an adult-to-adult life cycle, this ratio applies to a
census of adults. If the census were taken in terms of eggs, immatures, and so
on, one would have to use the appropriate variance of LRS for the cycle corre-
sponding to the empirical census count. One could also modify the formulas in
Crow and Kimura (1970) and Crow and Denniston (1988) for more complicated
situations in which population size is not constant, different effective numbers
are needed, or the sex of offspring is known.

In addition to the analytical solution, we have described a deterministic esti-
mate of the distribution of LRS that allows one to relax the assumptions of a
single age of first breeding and a constant fecundity schedule throughout a co-
hort’s lifetime. The method requires a computer program and more data than are
usually obtained. However, the additional details of the demography schedules
may appreciably affect estimates of variance of LRS. As an example, consider
the lesser snow goose (table 3). In this species only half the individuals start
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TABLE 3

ESTIMATES OF SURVIVAL AND BREEDING PROBABILITIES AND OBSERVED FREQUENCY DISTRIBUTION OF
FECUNDITY BY AGE FOR THE LESSER SNOW GOOSE (ANSER CAERULESCENS)

AGE
0 1 2 3 4 4+
Survival probability .46 .76 .76 .76 .81 .81

Breeding probability .00 .00 .50 .86 1.00 1.00

CLutcH SizE AT HATCHING

0 1 2 3 4 S 6 7
Age:

2 3 0 3 9 3 1 0 0
3 4 4 6 17 29 11 1 0
4 12 2 8 25 25 14 S 0
S 5 1 4 22 37 35 3 2
6 3 1 3 24 36 25 10 0
7 4 0 2 11 35 21 3 0
Total 31 8 26 108 165 107 22 2

breeding at age two, 86% are breeding at age three, and all individuals have
started to breed at age four (Cooke and Rockwell 1988); the mean clutch size
increases from age two to seven and then remains approximately constant (Rock-
well et al. 1983). One can ignore these subtleties and assume all individuals com-
mence breeding at age two and that their fecundity distribution is constant with
age and equal to the distribution pooled over ages. With those assumptions, the
analytical estimate of V| gz is 5.22, assuming the expectation of LRS is two. If
instead, the actual distribution of LRS is computed using a variable age of onset
of breeding and increasing fecundity with age, then one obtains an estimate of
Vi gs of 6.82. For this example from a natural population, the effect of the com-
plexities is to increase the variance by 30%.

The results obtained from both the analytical solution and the computer simula-
tion are deterministic. They represent the expected variance of LRS for an infinite
population assuming the distributions or moments used in the calculations are
parametric values. Clearly this will not be the case for data derived from natural
populations. Thus, it would be appropriate to have confidence limits on the esti-
mates of Vs obtained with our methods. Unfortunately, this is not a simple
problem because the sampling distribution for the variance (eq. [4]) is unknown.
An alternative approach is to evaluate the robustness of the estimates by random
sampling from a known distribution.

We investigated the effect of limited data on estimates of variance with a Monte
Carlo simulation. We used an arbitrary but simple demographic schedule (table
4); life expectancy and offspring number in each of the years of life were stochas-
tic variables with known distributions. The parametric expectation (1.126) and
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TABLE 4

AN EXAMPLE OF A SIMPLE DEMOGRAPHIC SCHEDULE FOR SURVIVAL
AND BREEDING PROPENSITY

Survival Cumulative Breeding
Age Probability Survival Probability
(x) (s)) ) b))
0 .50 1.00 0
1 .50 .50 1.0
2 .00 .25 1.0
3 A 0

Note.—For this schedule, probability of fecundity P(F) for all
numbers of offspring (0-3) is .2S5.
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Fic. 3.—Empirical mean and 95% confidence intervals of variance of lifetime reproductive
success for simulated populations of varying sizes with the demographic parameters of table
4. Mean and confidence interval based on 1,000 Monte Carlo simulations at each population
size.

variance (2.490) of LRS are easily computed. One thousand iterations of variously
sized samples of individuals were drawn from the distributions, and an estimate
of V| gs was computed from each sample; for the 1,000 estimates at each sample
size (10, 25, 35, 50, 64, 75, 100, 250, 500, and 1,000), the empirical mean and 95%
confidence interval for V| s are plotted in figure 3. For very small samples, 25
and fewer, estimates of variance of LRS may be off by a factor of two; for
samples up to 100 or so, estimates of variance may diverge from the parametric
value by about a third; as samples approach 500 to 1,000, 95% of the estimates
are within 10%-20% of the parametric value. Not surprisingly, relatively large
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samples, by field study standards, are necessary to obtain estimates of variance
with even a little precision.

Many field studies do not follow individuals for complete lifetimes. Rather a
number of adults may be watched for several years, that is, through part of their
potential life span, and a number of clutches will be observed. In such cases, the
variable with the most limited sample size probably will have the greatest influ-
ence on the sampling error of V| gq. As figure 2 indicates, both life expectancy
pattern as well as fecundity distribution have a significant effect on V yq. It is
clearly desirable to base estimates of V;gg on samples of at least several score
observations of individual year-to-year survival and an equal number of clutches.
In addition, it is desirable to compute an explicit estimate of confidence through
a bootstrap analysis or a Monte Carlo simulation such as the one described here.
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APPENDIX
RaNDOM Sums AND ProbucTs OF RANDOM VARIABLES

We have shown that for an iteroparous organism the lifetime reproductive success (LRS)
of an individual is the sum of its reproductive successes for each of the breeding episodes
that occur during its lifetime. Thus, the individual probability events, which result in the
overall distribution of LRS of the population, are the sums, over the number of reproduc-
tive bouts, of the numbers of offspring produced during each bout, that is

L
S
i=1

where L is the random variable representing number of reproductive episodes during the
individual’s lifetime and F; is its fecundity in the ith breeding episode. If the F;’s are
independent and identically distributed and are independent of L, then for the population
of such individuals

VLRS = X%‘VL + XLVF

In developing an algorithm for decomposing empirical estimates of Vg into variance
components, Brown (1988) relied on Goodman’s (1960) equation for the variance of the
product of two random variables, for example L and F,

Vip = X3V, + X} Ve + Q(L,F).

The last term represents joint variation. This equation is inappropriate for the problem of
variance of LRS, however. The value of an individual probability event in a product of
random variables formulation is the product of, say, lifetime L and fecundity F. Thus, for
example, one sample event in this space is an individual lives 3 yr and has five offspring;
the value of this event is 3 X 5, or 15. A possible biological interpretation of this event
might be that the individual has five offspring in each of its 3 yr. Most real organisms,
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“however, produce different numbers of recruits in their various breeding attempts, simply
because of yearly environmental variance. At any rate, a process that separately samples
from a distribution of reproductive successes during each breeding episode will not have
the same variance as one in which identical numbers of offspring are produced during each
reproductive episode.

The magnitude of the difference in variance is seen in the comparison of the variance
of a random sum versus Goodman’s formula for the variance of a product of random
variables, that is,

Veum = XEVL + X Vg versus Vip= X2V, + X: Ve + Q(L,F).

Interestingly, the expectations of the two processes are identical, X| Xg. The second term
in the equation for the variance of the product of two random variables will be greater or
less than the corresponding term for the variance of a random sum depending on the value
of the mean lifetime (actually the number of breeding bouts). If this expectation is greater
than one, then the first two terms of the product variance will exceed the actual variance
and, in a variance components decomposition, result in the inference of a negative covari-
ance, even if one does not exist. If the expectation of breeding bouts were less than one,
then a positive covariance would be inferred.

Another way of viewing the difference between the two approaches is that the analytical
random sum method starts with the assumption that the variance of reproductive success
in the population is because of environmental variation common both among individuals
and across years. In the product of random variables approach, an initial assumption is
that the variance in the population is because of consistent among-individual differences
and that there is no among-breeding-attempt variability within individuals. Thus, any actual
within-individual among-year variation is interpreted as a covariance and not an environ-
mental component of variation.
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