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Introduction: Our collective knowledge of the
thermodynamic properties of gas, solid, and liquid
phases rests on over a century of experimental work.
Over the last 35 years this work has been incorporated
into increasingly more rigorous models to investigate
nebular condensation [1-4], liquid-crystal equilibrium
[5,6], and the evaporation of silicate liquids [7-11].
These tools can be combined to address the origin of
Ca-, Al-rich refractory inclusions (CAls) in the early
solar nebula. The melilite solid solution (Ca,Al,SiO--
CaM@Si,O;) is ubiquitous in CAls, and its slow
MgSi=Al, diffusion [12], makes mélilite a potentially
powerful petrogenetic indicator of the cosmochemical
circumstances of CAl formation.

When a vapor containing solar proportions of the
elements is cooled at low tota pressure (P”<~107
bar), the most refractory mineral assemblages to con-
dense contain the oxides CaO, MgO, Al,O; SO,
(CMAS), and minor TiO, [3/4]. If a mass of this
CMAS dust is heated to a melt, in pure H, gas, Mg and
Si evaporate much more rapidly than Al and Ca [10].
Many CAls exhibit bulk isotopic fractionation of Mg
and Si, probably the result of such evaporative loss,
and many CAls show evidence of having been heated
to a molten state prior to crystallizing. Melilites record
the changing bulk chemical and isotopic composition
of their host CAl, as mdlilite crystallized.

Methods: Earlier work describes our calculations
of condensation [4], liquid-crystal equilibrium [6] us-
ing the CMAS liquid model of [5] substituted for that
of [6], and evaporation of CMAS liquids [7-11].

Representative precursor condensates (a, X, &, @)
were chosen from the condensation trajectory (Fig. 1),
instantaneously heated to T, then linearly cooled, all
a P(H,)=10° b. Asin [9], only liquid evaporates, sol-
ids don't occlude droplet surfaces, diffusion in liquids
is instantaneous, only melilite is fractionated (100%),
and spinel istrapped as melilite displaces liquid.

Results: Figure 1 shows trajectories of 0.25 cm ra-
dius precursors evaporated at different cooling rates
(K/hr) in P(H,)=10° bar, crystalizing melilite and
spinel, compared to bulk compositions of real CAls,
corrected to solar Al/Ca as per [8]. A family of similar
evaporation trgectories accounts for the differences
between aggregate condensed dust compositions and
bulk compositions for a significant fraction of CAls.

In figs. 2a and 2b, the predicted compositions of
successive layers of melilite are shown for a, x, and &
as functions of the crystallized volume fraction, relative

to the melilite volume at the solidus (1500K). Calcu-
lated radii are shown for each 10% of volume, for a
hypothetical r=250 pm spherical crystal. We are test-
ing these predictions by investigating CAl mélilites for
correlated chemical and isotopic zoning.
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Fig. 1: Bulk Compositions of Evaporating CAl
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