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Abstract

Matrix population models are increasingly used in both theoretical and applied analysis of population dynamics

(Caswell, Matrix Population Models*/Construction, Analysis, and Interpretation (2001) 722). The projected

asymptotic growth rate from deterministic models, based on a single matrix, is invariant as to when in the annual

cycle the population is censused (typically, either immediately prior to or after breeding). Thus, we expect that given a

set of n matrices {A1, A2,. . ., An }, where each matrix Ai corresponds to a given environmental state i , that the long-

term expected stochastic growth rate calculated by the product of matrices selected at random from this set should not

depend on whether the matrices in the set are configured based on either a pre- or post-breeding census. However,

differences in stochastic growth rate as a function of the timing of the census can arise under conditions where there is

significant covariance among the individual matrix elements. Using a seasonal (periodic) matrix modeling approach, we

show that such differences are an artifact of how stochasticity is entered into the matrices, particularly when the

matrices are structured based on a post-breeding census model. In such cases, the annual projection matrix for a given

year is in fact a product of component seasonal matrices from two successive years. Failing to account for this when

there is covariance among seasons will lead to a disparity in estimated stochastic growth rate when growth is calculated

based on the product of random matrices, as is frequently done. We show that a seasonal matrix approach, where the

seasonal matrices are explicitly subscripted for the appropriate year, eliminates the problem, and is a generally robust

approach to stochastic modeling.

# 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

Matrix models are commonly used for both

retrospective and prospective analysis of the

dynamics of structured populations (Caswell,

2000, 2001), and are typically parameterized based

on the transition rates among age- or size-classes
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assessed at some consistent point during the
annual cycle. The choice of the actual timing of

the annual census in the field (typically either prior

to or immediately after breeding) is often deter-

mined by logistical constraints. In many cases,

field studies focus on post-breeding census where

enumerating the number of individuals in a

population is made easier by the decreased mobi-

lity of individuals with offspring.
For birth-pulse populations enumerated imme-

diately following breeding, survival for individuals

age i years is calculated as l (i )/l(i�/1), whereas for

a pre-breeding census, survival is calculated as

l(i�/1)/l(i), where l(i) is the probability of surviv-

ing from birth to age i . Post-breeding fertility for

individuals age i years in birth-pulse populations is

calculated as SiBi , where Si is the probability of
survival from t to t�/1 (or, from age i to age i�/1;

age and time are equivalent within a cohort). In

contrast, fertility is calculated for a pre-breeding

census as Bi l(1)�/BiS0, the product of the ex-

pected fecundity (offspring production) of ith age

class (Bi ) and survival from birth to just before

first birthday (S0).

Since survival and fertility estimates in either
case are functions of common life-table para-

meters, it is straightforward to transform a post-

breeding census model into a pre-breeding census

model, and vice versa. In some cases, either a pre-

or post-breeding matrix model may be preferred

since it may provide a more useful (or at least

convenient) separation of the individual sub-com-

ponents of the aij matrix elements for some
analyses. For example, consider the following

life-cycle diagram reflecting a post-breeding census

of a population with 3 age-classes (offspring, 1-

year old and 2�-year old individuals; nodes 1, 2

and 3, respectively), with age-specific reproduction

of both 2-year old (BS ) and 3�-year old (BA)

individuals, and juvenile (first-year) and adult

survival (SJ and SA , respectively).

The projection matrix Apost corresponding to

this life-cycle diagram is

Apost�
0 SABS SABA

SJ 0 0
0 SA SA

0
@

1
A

The fertility elements (a1,2 and a1,3 in this

example) in a model based on a post-breeding
census are functions of both adult survival (SA )

and offspring production (Bx).

However, it is possible to separate these two

parameters by simply restructuring the model

assuming a pre-breeding census. Since fertility in

a pre-breeding census model is given as Bi l(1)�/

BiS0, then for the present example, the life-cycle

diagram corresponding to a pre-breeding census is

where nodes 1, 2 and 3 now refer to 1-year old, 2-
year old and 3-year old individuals, respectively.

The projection matrix Apre corresponding to this

pre-breeding life-cycle diagram is

Apre�
0 BSSJ BSSJ

SA 0 0

0 SA SA

0
@

1
A

With a pre-breeding census, adult survival and

reproductive output are separated.

Despite the structural changes, however, the

projected asymptotic growth rate (given as the

dominant eigenvalue l of the matrix; Caswell,
2001) is identical in both the pre- and post-

breeding configurations (i.e., lpost�/lpre). This

identity arises because annual survival (the prob-

ability of surviving a given annual interval) is (by

definition) invariant in the annual cycle when it is

estimated (i.e., winter to winter annual survival

must be the same as summer to summer annual

survival). Thus, estimated annual survival (or,
products of survival with other transition rates

estimated over the entire year) can be used in any

matrix model that projects over the annual cycle,

regardless of the timing of the census.

Given the invariance in growth rate for a single,

deterministic projection model to the timing of the
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census, it might seem reasonable to assume that
the long-term expected stochastic growth rate

should not depend on whether the matrices are

configured based on either a pre- or post-breeding

census (Caswell, 2001). Recently, however, one of

us (Gauthier) observed a case where the stochastic

grow rates for models of the dynamics of the

greater snow goose (Chen caerulescens atlantica)

appeared to differ depending on whether or not a
pre- or post-breeding model was used. Since this

seemed to be inconsistent with theory (Caswell,

2001), we proceeded to explore the problem more

fully. We show that such a discrepancy is, in fact,

an artifact of the way that variation was intro-

duced into our stochastic simulations. We explain

the conditions under which such a discrepancy in

stochastic growth rate between pre- and post-
breeding census models can arise, and describe a

somewhat general solution using seasonal (peri-

odic) matrices.

1.1. The apparent conundrum: a worked example

Consider the following situation, based on a

hypothetical goose population. For purposes of

this example, the dynamics of the populations are

completely specified by juvenile and adult survival

(SJ and SA , respectively), and basic reproductive

output (B). Typical for goose populations, we

assume that basal reproductive output Bx in-
creases with age x , from x�/2 to 4 years, beyond

which there is no further change with age (Cooke

et al., 1995). Based on a post-breeding census, the

corresponding life cycle diagram and projection

matrix (Apost) would be

Apost�

0 SAB2 SAB3 SAB4�

SJ 0 0 0

0 SA 0 0

0 0 SA SA

0
BB@

1
CCA

while for a pre-breeding census, the projection

matrix Apre is

Apre�

0 B2SJ B3SJ B4�SJ

SA 0 0 0

0 SA 0 0

0 0 SA SA

0
BB@

1
CCA

We linked environmental stochasticity to our
matrix models by creating a fixed set of n matrices

{A1, A2,. . ., An}, where each matrix Ai corre-

sponds to a given environmental state i . The long-

term expected stochastic growth rate is then

calculated by the product of matrices selected

according to some random distribution from this

set (Tuljapurkar and Orzack, 1980; Bierzychudek,

1982; Caswell, 2001). Other approaches to adding
stochasticity to matrix models are noted in the

discussion.

For this example, we assumed 2 environmental

states, which we designate as either ‘good’ (g) or

‘poor’ (p). We used the following hypothetical

data, corresponding to the parameters Bx , SJ and

SA for a ‘typical’ goose population in a ‘good’ and

‘poor’ year.

Parameter ‘good year’ ‘poor year’

B2 1.1 0.8

B3 1.5 1.2

B4� 1.9 1.5

SJ 0.45 0.25

SA 0.75 0.75

We varied both basal reproduction B and
juvenile survival SJ between good and poor years,

reflecting our general observation that, in most

goose populations, there is considerable annual

variation in basal reproduction and juvenile survi-

val, but not adult survival (Cooch and Cooke,

1991; Francis et al., 1992; Cooch et al., 2001;

Gauthier et al., 2001; Menu et al., 2002). This is

consistent with the high elasticity for adult survival
calculated for geese and most similar long-lived

species (Rockwell et al., 1997; Gauthier and

Brault, 1998; Pfister, 1998; Gaillard et al., 2000).

Given these parameter values, the corresponding

post- and pre-breeding census matrices for both

‘good’ and ‘poor’ years are
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Apost
g �

0 0:825 1:125 1:425
0:450 0 0 0

0 0:750 0 0

0 0 0:750 0:750

0
BB@

1
CCA

Apost
p �

0 0:600 0:900 1:125

0:250 0 0 0

0 0:750 0 0

0 0 0:750 0:750

0
BB@

1
CCA

Apre
g �

0 0:495 0:675 0:855

0:750 0 0 0
0 0:750 0 0

0 0 0:750 0:750

0
BB@

1
CCA

Apre
p �

0 0:200 0:300 0:375

0:750 0 0 0

0 0:750 0 0

0 0 0:750 0:750

0
BB@

1
CCA

As expected, the projected deterministic growth
rates for ‘good’ or ‘poor’ matrices are the same for

either the post-breeding (lg
post�/1.182, lb

post�/

0.991) or pre-breeding models (lg
pre�/1.182,

lb
pre�/0.991).

However, significant differences in the stochas-

tic growth rate between the two configurations

were observed, depending upon whether or not we

used a pre- or post-breeding configuration. We
estimated stochastic growth rate (logl̂s) for these

hypothetical data using the MLE described by

Heyde and Cohen (1985). (Note: we adopt the

logl̂s notation (sensu Caswell, 2001); logl̂s is

equivalent to the log l (Cohen, 1979) and a

(Tuljapurkar, 1990) notation used elsewhere.) We

assumed that years could be classified as being

either ‘good’ or ‘poor’, with P (‘good’)�/

P (‘poor’)�/0.5, selected iid . We projected 10 000

generations for each of 1000 iterations, estimating

growth as the mean of the log(Nt�1/Nt ) (which is

equivalent to the Heyde and Cohen MLE; Cas-

well, 2001), after discarding the first 500 genera-

tions for each iteration to eliminate the possible

effect of transients. Population size was normal-

ized after each generation (by dividing the popula-
tion vector by the sum of the vector) to prevent

cumulative errors in numerical precision.

Although Heyde and Cohen (1985) described an

analytical estimate for the variance of the stochas-

tic growth rate, we derived 95% CI for logl̂s

numerically by using the 2.5 and 97.5% tails

from the distribution of 1000 iterations. Using
our hypothetical ‘goose’ population models, the

estimated stochastic growth rate for the post-

breeding census models was logl̂post
s �0:0791

(95% CI: 0.0754�/0.0824), while the estimated

stochastic growth rate for the pre-breeding census

models was logl̂pre
s �0:0867 (95% CI: 0.0830�/

0.0903). These estimates are significantly different

given a nominal Type I error rate of a�/0.05, with
the pre-breeding models being projected to show

greater stochastic growth than post-breeding mod-

els. Taken at face value, there would imply a

considerable potential for error in estimating the

stochastic growth rate of the population, simply as

a function of how the apparent timing of the

census upon which the model is parameterized.

2. Conundrum explained: the problem of variable

environmental states

This result was surprising, since we had assumed

that growth rate in general (stochastic or other-

wise) was invariant to when in the annual cycle the

population was censused (Caswell, 2001). How-
ever, we noted that if we varied only one para-

meter (say, juvenile survival, SJ) between good and

poor years, rather than simultaneously varying

both juvenile survival and basal reproduction (as

above), then no difference between l̂post
s and l̂pre

s

was observed. For example, if we set basal

reproduction Bx to be the same between good

and poor years, using the previous values for good
years in both cases (i.e., B2�/1.1, B3�/1.5, and

B4��/1.9), but used SJ �/0.25 for poor years, and

SJ �/0.45 for good years, we estimated logl̂post
s �

0:1067 (95% CI: 0.1041�/0.1092) and logl̂pre
s �

0:1067 (95% CI: 0.1037�/0.1094). In this case, there

is virtually complete overlap of the 95% CI,

indicating no difference whatsoever in the esti-

mated stochastic growth rates.
Careful examination of this subtle difference

(aided by suggestions from Shripad Tuljapurkar

and Stephen Ellner), yielded the explanation:

simply restructuring the matrices between pre-

and post-breeding configurations (as we had

done) does not necessarily adequately account
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for the time frame over which variation in the

system occurs. As long as variation occurs within

the same logical time period (say, calendar year),

then both pre- and post-breeding models yield the

same stochastic growth rates. However, if the
pattern of variation occurs over more than one

time frame (as is the case when more than one

variable is changed between good and poor years),

then failure to account for this difference leads to

apparent differences in stochastic growth.

2.1. A seasonal matrix approach

This is most easily demonstrated using a peri-

odic (seasonal) matrix approach (Caswell, 2001).

We consider an annual cycle divided into 2 discrete

phases, a breeding period and a non-breeding

period (Fig. 1). We assume that the population

can be censused either immediately prior to or

immediately following breeding (referred to as

above as pre- or before-breeding and post- or

after-breeding, respectively). Let b(t) be the popu-

lation vector before breeding in year (t). Let a(t) be

the population vector after breeding in year (t).

Let L(t) represent the transition matrix from b(t)

to a(t), such that a(t)�/L(t)b(t) (i.e., L(t) is the

breeding season transition matrix, incorporating

breeding-season survival and fertility of indivi-

duals in the population vector b(t); Fig. 1). Let

Q(t) be the transition matrix from a(t) to b(t�/1),

such that b(t�/1)�/Q(t)a(t) (i.e., Q(t) is the non-

breeding season transition matrix, incorporating

non-breeding season survival of individuals in the

population vector a(t); Fig. 1).

Fig. 1. Schematic representation of the annual cycle of a typical species of Arctic-breeding goose, partitioned into a breeding and non-

breeding season (size of the respective sections is drawn approximately proportional to the segment of the year comprised by each

period). Populations can be censused either prior to (before) breeding (b) or after breeding (a). The transitions between the population

vectors a and b are a function of the seasonal transition matrices L (breeding period) and Q (post- or non-breeding season),

respectively.
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Thus, b(t�/1)�/Q(t)a(t)�/Q(t)L(t)b(t), while

a(t�/1)�/L(t�/1)b(t�/1)�/L(t�/1)Q(t)a(t). Thus,

the pre-breeding matrix can be written as

Q(t)L(t), whereas the post-breeding census is

L(t�/1)Q(t) (Fig. 2). Stated simply, the size of

the pre-breeding population next year (t�/1) is a

function of the size of the pre-breeding population

this year (t ), successively multiplied by the breed-

ing season and non-breeding season transition

matrices L and Q for year (t). In contrast, the

size of the post-breeding population next year (t�/

1) is a function of the size of the post-breeding

Fig. 2. Schematic representation of the time frames for each seasonal matrix Q and L (dashed arcs), and the annual projection matrix

(solid arcs) corresponding to a pre- or post-breeding census model. bi and ai give the pre- and post-breeding population vectors in a

given year, respectively.

Fig. 3. A life cycle graph for the seasonal matrices corresponding to the breeding period (L) and post- or non-breeding period (Q) for a

hypothetical goose population (Fig. 1). The graph begins with a pre-breeding census in year t . For convenience, the starting phase is

repeated at the bottom of the graph.
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population this year (t), successively multiplied by
the non-breeding season transition matrix Q for

year (t), and the breeding season transition matrix

L for next year (t�/1) (Fig. 2).

In our modeling, we made several assumptions.

First, we assumed that (1) years can be classified as

being either ‘good’ or ‘poor’; (2) that either Q, or

L, or both, vary between good and poor years; and

(3) in a given year (t), if the year is categorized as
good or poor, then this is reflected in both L and Q

for that year (i.e., a good breeding season in year

(t) is followed by a good non-breeding season in

year (t)). This third assumption is central to the

rest of the argument. If either of the seasonal

matrices Q or L is fixed (i.e., is constant over good

and bad years), while the other varies, then the

pre- and post-breeding census models both have 2
possible environmental states. For example, if Q is

fixed, but L varies between good and bad years,

then the 2 possible pre-breeding environmental

states are QL(g )t and QL(p )t , while the 2 possible

post-breeding environmental states are L(g )tQ

and L(p )tQ.

In contrast, if both components vary, such that

Q has 2 environmental states, and L has 2
environmental states (corresponding to good and

poor years, respectively, in each case), then the

pre-breeding census still has only 2 environmental

states (since Q and L are both indexed to the same

year (t)), but the post-breeding census model, in

which Q and L are indexed in different years (i.e.,

L(t�/1)Q(t)), has 4 possible states: L(g)t�1Q(p )t ,

L(p )t�1Q(p)t , L(g )t�1Q(g)t , and L(p )t�1Q(g)t .
This provides the explanation for the difference

in estimated stochastic growth rate when both Q

and L are allowed to vary (analogous to varying B

and SJ simultaneously in our earlier example), but

not when we varied only one parameter. In the

case of varying 2 parameters, the pre-breeding

models have only two possible environmental

states, where both Q and L are indexed to the
same year (t). In contrast, the post-breeding model

has 4 possible environmental states, in each of

which Q and L are indexed to different years.

Thus, in the pre-breeding models, year (t) is truly

independent of year (t�/1). However, the situation

is more complex for the post-breeding model: since

the post-breeding projection is L(t�/1)Q(t), then if

L(t�/1) is a ‘good year’, then Q(t�/1) is also a
‘good’ year, meaning that the projection for (t�/2)

is not independent of what happens at (t�/1). In

our initial approach to estimating stochastic

growth, where we varied both SJ and Bx between

good and poor years (analogous to varying both Q

and L, respectively), we implicitly considered only

2 (g �/g , and p �/p ) out of the 4 possible post-

breeding matrices (representing the 4 possible
environmental states noted earlier), because of

assumption 3 (above). Further, in simply trans-

forming a pre-breeding census model to a post-

breeding census model, we ignored the different

time-frames used for L and Q in the post-breeding

models, and the lack of independence between

years.

2.2. Application: the goose example

Applying this seasonal (periodic) matrix model-
ing approach to our hypothetical goose example

(Fig. 3), where both basal reproduction Bx and

juvenile survival SJ varied between good and poor

years, yielded 4 discrete matrices, corresponding to

the breeding (L) and non-breeding (Q) segments of

the annual cycle in both good and poor years

(note: we assumed that survival of adults during

breeding was 1.0, as indicated on the diagonal of
the Li matrices):

Lg�

0 1:1 1:5 1:9
1 0 0 0

0 1 0 0
0 0 1 1

0
BB@

1
CCAQg�

0:45 0 0 0

0 0:75 0 0

0 0 0:75 0
0 0 0 0:75

0
BB@

1
CCA

Lp�

0 0:8 1:2 1:5
1 0 0 0
0 1 0 0

0 0 1 1

0
BB@

1
CCAQp�

0:25 0 0 0

0 0:75 0 0
0 0 0:75 0

0 0 0 0:75

0
BB@

1
CCA

Remembering that the pre-breeding census pro-

jection is the product Q(t)L(t), while the post-

breeding census projection is the product L(t�/

1)Q(t), then we see clearly that the stochastic

projection for the pre-breeding model involves
selecting both Q and L for the same environmental

state in each year t (i.e., both good or both poor),

while for the post-breeding model, we select Q for

year t , but L for year (t�/1). This is easily

accomplished computationally by initially con-

structing a vector containing the random series
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of environmental states, and then selecting the (t�/

1)th element to specify the environmental state for

L given the environmental state for Q in year (t).

This also allows us to easily specify that Q(t�/1) in

the next iteration must reflect the same environ-

mental state as for L(t�/1), under the assumption

that Q and L both reflect the same environmental

state within any annual period. Using this seasonal

matrix approach, the estimated stochastic growth
rate for the pre-breeding census models logl̂pre

s �
0:0867 (95% CI: 0.0833�/0.0900), while the esti-

mated stochastic growth rate for the post-breeding

census models was logl̂post
s �0:0868 (95% CI:

0.0833�/0.0902). Clearly, there is now no difference

in the estimated stochastic growth rate between the

two configurations. We note that the estimate of

logl̂pre
s (� logl̂post

s )�0:0867 is identical with the
estimate from our original calculation for the

pre-breeding model (presented earlier), as is the

95% CI (showing the equivalence of the two

approaches in the pre-breeding case). Not surpris-

ingly, we found similar equivalence when we

varied only one parameter at time.

3. Discussion

This short commentary is intended to reinforce

the general suggestion that, whenever dealing with

stochastic systems in discrete time, care must be

taken to ensure that the manner in which stochas-

ticity is entered into the system actually reflects

what the investigators intend. We were unwittingly

guilty of not heeding this general admonishment,
and found ourselves faced with what appeared to

be an incongruous result: in some cases, we seemed

to have a statistically significant difference in

estimated stochastic growth rates depending on

whether or not the matrix models were parameter-

ized assuming either a pre- or post-breeding

census. However, such a difference seems to

contradict basic expectations from standard ergo-
dic theory (Caswell, 2001).

Fortunately, there is a relatively straightforward

explanation for the differences that we observed:

such differences can occur if there is (i) a difference

in the number of possible states between the pre-

and post-breeding configurations, and (ii) care is

not taken to properly time-subscript the seasonal
matrices (Q and L in our examples) which when

multiplied together yield the annual projection

matrix A. Using a periodic (seasonal) matrix

approach, with explicit subscripting, avoids this

problem, and eliminated the apparent differences

between pre- and post-breeding results which

occurred in some cases.

However, there are at least two important points
to make here. First, the ‘problem’ occurred when

considering post-breeding census projections. For

post-breeding census models, the projection is

L(t�/1)Q(t). Thus, for post-breeding models,

which are probably the most commonly used, it

is critical to properly account for the timing of the

2 seasonal matrices L and Q: since the census

occurs at the end of breeding in year (t), then the
projection involves the non-breeding season survi-

val (Q) in year (t), but the breeding season

production matrix L in year (t�/1)! Simply trans-

forming a pre-breeding model into a post-breeding

model by (in effect) changing where SA and SJ

occur in the matrix ignores this difference in time

subscripting. And, as such, the estimated stochas-

tic growth rate will differ from the estimate from a
periodic matrix projection which properly sub-

scripts the seasonal matrices.

Second, the pattern of covariance between Q

and L may be important in some cases. As noted

earlier, in our example we considered a particular

‘calendar year’ as being either ‘good’ or ‘poor’.

Thus, we assume that both Q and L are simulta-

neously classified as good or poor, depending on
the year. For example, consider a post-breeding

census model. Suppose that non-breeding survival

matrix Q reflects a ‘poor’ year in year (t), while the

breeding period matrix L in year (t�/1) is a ‘good’

year. Then, this means that the non-breeding

matrix Q next year must also reflect a ‘good’

year. This lack of independence, and failing to

properly time-subscript the transition matrices, led
to our original observation. This ‘positive covar-

iance’ between L and Q is clearly not always the

case, although it may in fact be generally correct

for most goose populations (poor breeding years

often are characterized by slow offspring growth

and survival over the first year, such that L and Q

covary positively within a year) and many other
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organisms. It is important to note that our original
observation of a difference in the stochastic

growth rates as a function of the timing of the

census was a function of our failure to account for

the covariance of environmental states, by prop-

erly accounting for the time-subscripting of Q and

L (Fig. 2). (The same is true regardless of whether

the covariance is positive, as in our case, or

negative, although negative covariance in environ-
mental states will clearly change the projected

stochastic growth rates; in our example, /logl̂s�
0:0868 for positive environmental covariance, and

logl̂s�0:0746 for negative environmental covar-

iance). If Q and L vary independently within and

among years, then the ‘problem’, as we have

described it, disappears.

Our results are similar in several respects to
consideration of stochastic growth rates in peri-

odic systems, where it is often necessary to treat

environmental variation as a Markov process,

rather than iid (sensu Silva et al., 1991). As noted

by Caswell (2001; p. 421) in some cases the

frequency of a particular environmental state is

insufficient to characterize the population growth

rate (which it is in completely iid situations),
because the order in which the environmental

states occur is also important (see also Tuljapur-

kar, 1997). Markov chain models include both iid

(no serial autocorrelation among environments)

and periodic environments (serial autocorrelation

approaching 1) as limiting cases (Dixon et al.,

1997; Caswell, 2001). Failure to account for

autocorrelation among environments can signifi-
cantly influence both estimates of stochastic

growth rates (Dixon et al., 1997; Tuljapurkar,

1997; Caswell, 2001), and the relative sensitivity of

population growth to perturbation of one or more

elements of the model (Dixon et al., 1997; but see

Caswell 2001, p. 421).

3.1. Entering stochasticity in matrix models

The results of our analysis of this problem

invariably leads to the general question of how

best to introduce stochasticity into matrix models;

as stochastic matrix models are increasingly used,

such a consideration is important. As noted by

Caswell (2001), there are a number of ways in

which matrix models can be linked to stochastic
environmental variation. One approach is to allow

the elements of the matrices to vary independently,

according to some parametric distribution (e.g.,

Maguire et al., 1996; Ratner et al., 1997). If each

matrix element varies independently of the other

elements of the matrix, then no difference in

stochastic growth rate between pre- or post-

breeding census models is observed. However,
such an approach ignores likely covariance among

matrix elements. Covariance among matrix ele-

ments can be achieved either by sampling the

individual aij values from the joint probability

distribution (which will be multivariate, although

generally not multivariate normal), or by ran-

domly generating the lower-level vital rates from

which the matrix entries are calculated (Doak et
al., 1994; Caswell, 2001). While the former ap-

proach can be technically difficult (especially when

the joint probability distribution is not multi-

variate normal), the latter is readily implemented.

The difficulty with using randomly generated

lower-level vital rates is in adequately specifying

(i) the appropriate parametric distribution for the

particular vital rate (the shape of the random
distribution used can strongly influence the results

of stochastic projections in some cases; Bukowski

et al., 1995; Hamed and Bedient, 1997; Menges,

2000), and (ii) specifying the appropriate variance

term for each parameter (which requires decom-

posing estimated variance into process and sam-

pling variance; this is also not easily done in some

instances, especially for parameters which are not
estimated based on a formal statistical model;

Burnham et al., 1987).

An alternative, easily implemented approach is

to select a matrix from a set of matrices, where

each matrix in the set corresponds to a particular

environment. Since the matrix reflects the covar-

iance among the matrix elements, then this in

effect imposes a particular covariance structure on
the vital rates. This approach has been widely used

(Gauthier and Brault, 1998; Caswell and Kaye,

2000; Caswell, 2001). However, this approach

selects from a finite set of matrices, each corre-

sponding to a particular environmental state, and

is in effect a bootstrap sample of possible environ-

mental states. As such, inference is conditional on
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the adequacy of the bootstrap sample in represent-
ing the range of environmental states; with a finite

number of matrices, there are a finite number of

pathways (i.e., stochastic realizations) that a

population can follow. Clearly, this is not a

limitation if matrix elements are selected at ran-

dom from parametric distributions.

4. Conclusions

This study was motivated by a result which

made little sense to us: an observation that, under

some conditions, the stochastic growth rate esti-

mated from a matrix model based on a pre-

breeding census differed significantly from the

growth rate estimated for the same model, but
parameterized to reflect a post-breeding census. It

is fair to note that such a comparison is somewhat

artificial, and that the original result was condi-

tional upon how we structured the model (speci-

fically, the positive covariance between seasons; a

good breeding season is followed by a good non-

breeding season). Regardless, our results demon-

strate the need for careful thought as to how
randomness is introduced into structured models,

particularly when there is covariance among

seasons (as there may often be). If care is not

taken, particular with post-breeding census mod-

els, resulting estimates of stochastic growth rate

may be biased. Seasonal (periodic) matrix models,

as we have used, have the utility of making the

pattern of stochasticity, and covariance among
seasons, explicit. We reiterate the basic recommen-

dation to explore stochastic matrix models (Cas-

well, 2001), but to do so carefully.
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