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1. INTRODUCTION

Polar coastal wetlands mostly consist of salt- and brackish/fresh-water
marshes, laida (coastal tundra inundated by seawater during storm surges or by
freshwater at the time of snow and ground-ice melt), and coastal tundra plains
with numerous ponds and shallow lakes in Arctic and sub-Arctic zones atfected
by permafrost (Figure 1). Vegetated coastal wetlands are found along every
northern coastline, although locally they are often poorly developed especially
on coasts of polar deserts. The deserts have a very cold climate (less than 10°C
average during the warmest month of the year), very low precipitation (less
than 250 mm/year to as low as 45mm/year), and extreme poverty of life
(Callaghan et al., 2005).

In the north, coastal marshes are well represented in low Arctic and sub-Arctic
lowlands. They may bound wide tidal flats in protected embayments or develop
behind coastal barriers partially inundated by tides where fine sediments (mud
to fine-grained sand) can accumulate and vegetation grows under waterlogged
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Figure 1 Wetlands. (a) Distribution of wetlands on Earth; polar wetlands are characterized by the presence of permafrost. (b) Distribution of
Arctic and sub-Arctic zones in which polar wetlands are located. (c) Distribution of the major types of Wetlands Regions of Canada (the Boreal
Wetland Zone is further subdivided into various sectors as indicated in Zoltai, 1980) (FB, Foxe Basin; th, Fury and Hecla Strait; GL, Great lakes;
HB, Hudson Bay; hs, Hudson Strait; JB, James Bay; np, North Point; md, Mackenzie River Delta; pk, The Great Plain of the Koukdjuak).
[Compilation of data from U.S. Dept. of Agriculture (1996), UNEP/GRID (2006), Zoltai (1980)].
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conditions. Laida and other coastal tundra also develop on low-lying polar
coastal plains. Equivalent types of marine coastal wetlands do not develop to
any extent in the Southern Hemisphere because few ice-free lands occur south
of the Antarctic Circle. In addition, surface marine currents flow latitudinally
and, unlike the Northern Hemisphere, do not refrigerate the continents at lower
latitudes.

Some of the largest polar salt marshes have developed in the Hudson Bay
Lowland, on the coasts of Hudson and James bays. Some of the largest laida and
tundra coastal plains occur in the southeastern corner of the Foxe Basin, along
the Arctic Coastal Plain of Alaska and Yukon, and along the Russian Arctic
coast. Brackish marshes and other coastal wetlands develop extensively on deltas/
estuaries of rivers that flow into Hudson and James bays and the Arctic Ocean,
such as in the deltas of the Mackenzie River (Canada) and Lena River (Russia)
(Figure 1).

Multiyear, multidisciplinary studies of wetlands and their land uses have
been carried out along the western coasts of James Bay (JB) and southwestern
Hudson Bay (HB) and to a lesser extent in the Foxe Basin (FB) and some of
the Canadian Arctic Islands. Variations in sediment, soil, vegetation, and
distribution of infauna and migratory birds were recorded along selected
transects from the sea to the upper marshes. Regional physiographic variations
of the coastlines along a south—north transect were also examined (Figure 1c).
In addition, detailed multiseason analyses of local estuarine areas and selected
coasts have been made, such as at North Point (np) in James Bay (Figure 1c),
which allow for benchmark comparisons to be made with coastal wetland sites
elsewhere.

2. GEOLOGY/GEOMORPHOLOGY

The Arctic regions have been affected by several orogenies (mountain-
building episodes) and are mountainous over large tracts. A series of terranes
(fragments of the Earth’s crust) accreted during the Mesozoic in present
Arctic areas where mountain ranges developed in northeastern Russia, Alaska
(such as the east—west trending Brooks Range (BR)), Canadian Arctic (such as
the Richardson Mountains (RM) and Innuitian Mountains), and northern
Greenland. Older Caledonian mountain belts developed during the Paleozoic
in eastern Greenland, northern Europe, and the central parts of Russia (Ural
Mountains) (Figure 2). The Kamchatka Peninsula in northeast Russia and the
Aleutian Islands to the west of Alaska are two active tectonic areas where
continuing subduction of the Pacific tectonic plate has in the past generated,
and 1s still generating, active volcanoes and rugged terrain. Nevertheless, exten-
sive Arctic lowlands occur in between or in front of these mountain chains along
the Arctic Coastal Plain of northern Alaska, in the Mackenzie River delta in N'W
Canada, and in parts of the Arctic Russian coastal areas west and east of the Ural
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Figure 2 Distribution of major mountain chains on Earth (BR Brooks Range; RM
Richardson Mountains).

Mountains. In northeast Canada, other extensive coastal plains occur in Arctic
and sub-Arctic zones that extend southward along the coasts of Hudson and James
bays bounded by the North American Precambrian Shield and underlain by
low-lying Paleozoic rocks of old inland basins.

Most polar areas have been variously glaciated during Late Pleistocene
except in a few cold but dry areas in northernmost North America and Russia
(Figure 3a,b). The large ice sheets were thicker at their epicenters (domes) and
thinned toward saddle and peripheral areas. This had several consequences that
still affect polar coastal areas. The weight of the glaciers depressed the Earth’s
crust, and as the glacier melted, differential isostatic rebound has led to uplifts
of more than 200m. The rebound is still continuing at rates that vary from
around 1m per century where the ice was thicker near the centers of glaciation
at mid-high latitudes to minimal rates of uplift in other areas. The isostatic
uplift also led to land emersion from large lakes and seas that had formed in
front of the glaciers, and subsequently extensive coastal plains developed. Land
emersion (regression) continues in areas near former ice domes where the land
uplift is more rapid than the present sea-level rise. This occurs along the
western coasts of Hudson and James bays, along the Gulf of Bothnia between
Finland and Sweden, and in the White Sea in northwest Russia. Where the
land uplift was small and is no longer occurring and where there is no active
neotectonism, a marine transgression is taking place, such as along the Arctic
Coastal Plain of Alaska, northwestern Canada, and parts of the Siberian coastal
plains.

The extent of glaciation in central-north Russia is still unresolved: two major
hypotheses have been put forward (Grosswald, 1998; Velichko et al., 1997). One
hypothesis proposes a wide, thick glaciation during the Late Pleistocene, which
could have generated postglacial isostatic uplift similar to that of North America
and Fennoscandinavia (mainly Finland, Sweden, and Norway). The other
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Figure 3 Pleistocene glaciations of northern lands (after Flint, 1971; Fulton, 1989). (a) North
America. (b) Arctic Russia; the wide glaciation hypothesis considers the Yamal and Yenissei area
to have also been glaciated in Late Pleistocene (late Weichselian) (adapted from Raab et al., 2003).
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suggests a restricted glaciation that generated smaller areas of postglacial isostatic
uplift. For example, uplift is still occurring in the White Sea area in the Kola
Peninsula, northwest Russia (Jeglum et al., 2003).

3. OCEANOGRAPHY

The inshore Arctic seas are generally shallow, particularly along the Russian
coasts, Foxe Basin, and James Bay. They and their respective coasts are
subjected to a harsh climate and a seasonally variable ice cover that is more severe
at the northernmost latitudes where ice is present throughout the year. Sea
ice influences marine currents, tides, and waves that, in turn, affect the
stability of coastlines although their potential action is limited to a few months
of the year.

The marine currents of the Arctic Ocean and the adjoining inland seas are
complex (Figure 4). In North America Arctic waters enter the Canadian inland seas
from the Fury—Hecla Strait in the northwest corner of Foxe Basin and are carried
down into Hudson and James bays to latitudes of about 51° N, cooling oft the
surrounding lands. Conversely, the northern lands of Fennoscandinavia are
warmed by a branch of the North Atlantic Drift current up to approximate latitude
of 70° N, well above the Arctic Circle.

The tides of the northern seas are generally microtidal (less than 2m in
amplitude), but several shores experience mesotidal excursions, such as those of
Hudson Bay, James Bay, and the Barents Sea. Macrotidal excursions with
tides exceeding 5m and locally 10m occur in a few embayments, such as
Bristol Bay in west Alaska, Bowman Bay in the southeast Foxe Basin, Frobisher
(Iqualuit) Bay in southeast Baffin Island, parts of Ungava Bay along the Hudson
Strait, Mezen Gulf in east White Sea, and the Gulf of Shelikov in the northern
Okhotsk Sea.

The salinity of the Arctic seas may in some places vary drastically from
season to season due to the formation and melting of the ice cover and to the
variable input of fluvial freshwater during spring—summer freshets (floods).
“Unlike tropical oceans, which are temperature-stratified (there is a thermocline),
the Arctic Ocean [and adjacent Arctic seas] is [mostly] salinity-stratified (there
is a halocline), although at high latitudes the ocean is much less stable. The
temperature profile of Arctic waters is nearly uniform at 0° to 1°C”(Linacre and
Geerts, 1998).

Brackish-water conditions develop in and near the estuaries of major rivers
during the spring—summer freshets, and more marine saline conditions are reestab-
lished later when the river discharge decreases drastically. One dramatic case occurs
in the shallow, southern James Bay, where freshwater is injected into the shallow
sea by the northward flowing river floods. The anticlockwise marine current of the
bay moves these waters northeastward, freshening the eastern coast of the bay
significantly more than the western coast.
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Figure 4 Marine currents (arrows) in the Arctic Ocean and adjacent seas (north-directed
arrows just west of Iceland and Norway represent movement of warm water into the Arctic)
(after AMAP,1998).

4. CLIMATE

Average annual low temperatures and amounts of precipitation decrease
substantially from south to north, particularly where polar deserts are present,
such as in the northernmost parts of the Russian and Canadian Arctic Islands.
The cold climate and the strong variation in day length throughout the year greatly
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affect assemblages of plant and animal species. There is a particularly low species
richness in polar deserts.

A cryosphere has developed in northern areas, which includes ice formation
over water bodies and within the ground (permafrost). The distribution of perma-
frost in northern lands does not regularly follow latitudinal alignments; rather, it
is influenced by the heat redistribution brought about by atmospheric movements
and marine currents. Accordingly, there is a southern dip of continuous
and discontinuous permafrost in continental and mountainous areas of central
Asia and, more relevant for this chapter, a latitudinal dip in central-east
Canada where anticlockwise marine currents bring cold Arctic waters to low
latitudes in Hudson and James bays (Figure 5). The effect of marine currents is
dramatically evidenced in James Bay, where warmer fluvial waters are injected into
the bay from the south and are moved northeastward along the shore by marine
currents, leading to a significant northward shift of the permafrost zones on the east
side of the bay.
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Figure 5 Distribution of permafrost in Northern Canada (after Atlas of Climatic Maps,
Canada, 1967).
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Furthermore, whereas new (modern) permafrost is actively forming at mid-
latitude where the land is actively emerging from the sea, Pleistocene relict
permafrost is present in the high Arctic. Such relict permafrost has undergone
adjustment to the variable Holocene climates, particularly during the postglacial
temperature maximum (approximately 8,000-7,000 years BP) in northwest Canada
and northern Alaska, as demonstrated by peat accumulations of that age, but which
are now frozen and inactive. This has led to the development of various geomor-
phologic structures in these landscapes including numerous thermokarst features
(Washburn, 1973; Ruz et al., 1992).

Frozen soil constitutes a barrier to free groundwater movement. In the high
Arctic, a thin (<1 m) surficial active layer thaws during the summer. Water moves
by convection only within this thin layer, as the underlying permafrost for the
most part impedes percolation, and, thus, waterlogged conditions are favored
(Woo, 2002). Farther south in the discontinuous and sporadic permafrost area of
the sub-Arctic, the groundwater movement is less influenced by the ground ice:
near-surface water flow is only partially obstructed by locally persistent ice lenses.
The groundwater flow is still very slow, though, because of the very low hydraulic
conductivity of peat.

5. STRUCTURE OF COASTAL WETLANDS

The characteristics of polar coastal wetlands depend on abiotic and biotic
conditions. They range from extensive seashore meadows showing a transition
from saltwater to freshwater on large coastal plains such as the sub-Arctic and Boreal
marshes of James and Hudson bays, to narrow strips of depauperate vegetation in
the mid- to high-Arctic where narrow wetlands mostly developed in swales
between beach ridges and brackish-water systems in deltaic areas.

Salt marshes are a characteristic landscape feature of low-lying Arctic coastlines
(Jefferies, 1977; Macdonald, 1977; Bliss, 1993). The best-developed marshes of
the low Arctic to sub-Arctic are those on the southern and western coasts of
Hudson and James bays (Jefferies et al., 1979). They have developed in the
last 300—400 years as the Hudson Bay Lowland has continued to emerge as a
result of the isostatic uplift (Andrews, 1973; Morner, 1980). Two major types of
marsh have formed: one on open coasts and the other in swales on coasts with

beach ridges.

1. The widest salt marshes occur inland from open, extensive sand and mud flats
(Figures 6a,b), and brackish marshes are formed in estuarine areas and on
mainland coasts freshened by fluvial plumes (Figure 6c¢,d). Less well-
developed marshes form on steeper shores with higher waves and low
sedimentation rates, where limited fine-grained deposits occur in bouldery
areas. The salt marshes open to the sea are much impacted by ice. During the
melting season, ice floes are grounded and later lifted and removed by tides, or
ice pressure ridges form (Figure 7a). This leads to the removal of marsh
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Figure 6 Structure of well-developed sub-Arctic coastal marshes, western James Bay. (a,b)
Marsh of open coasts with a well-developed gradation from algal high tidal flats at the
shoreline to inland freshwater marshes and peat-bearing fens. The diagrams show a cross
section of the substrate stratigraphy, the surficial depositional features (barbed short line
indicate sandy ripple marks), and erosional features by ice floes, progressive colonization of
the raised coastal plain by grassy vegetation, shrubs, and trees, and, in the top short columns,
the stratigraphy of the top 20 cm of the laminated and cross-laminated (inclined lines) recent
sediments and peat (symbols of diagrams are explained in vertical profile in “b”) (after
Martini et al., 2001). (c,d) Extensive brackish- to freshwater marshes on river-influenced
coasts. (e,f.) Coast with beach ridges and bilaterally structured coastal wetlands in the
interridge swales. (UM, upper marsh; LM, lower marsh; HTF, high tidal flat; UTF, upper
tidal flat; LTF, lower tidal flat).

material frozen to the underside of the floes, or to scouring due to ice push. As
the land emerges further and becomes more vegetated, typical jigsaw patterns
of pools develop reflecting earlier ice action (Figure 7b).

2. Marshes also form in interridge swales that are inundated by high tides,
where they acquire a bilateral vegetation distribution pattern with salt species
closer to the mid-swale tidal creek and brackish and freshwater species farther
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away from it. Locally, the marsh deposits of the swales have well-sorted sand
grains (dispersed or in thin lenses) received from the bounding beach ridges,
either blown in by strong winds or as a result of washover events during heavy
storms (Figure 6e,f).

In low Arctic to sub-Arctic zones, the generally muddy, wet sediments of
marshes are modified (ripened) as incipient soils develop. Incipient Bkg to Bg
horizons with grayish brown colors (2.5Y5/2) (Protz, 1982) occur in the upper
marshes, and ferrans (iron precipitates) may form around plant roots in better-
drained parts of the system. Along transects from the shoreline inland, salt-marsh
soils show a gradual increase in thickness of the surficial organic layer (never
reaching the 30—40 cm thickness to qualify as peatlands), a decrease in sodium and
chloride concentrations with an associated drop in electrical conductivity (e.g.,
from a seasonal average of 6.1 mS/cm in the lower marsh to 2.2 mS/cm in the
upper marsh at North Point (np) in southwest James Bay; Figure 1c), a marked
decrease in pH in the upper brackish/freshwater marshes, and a decrease in
calcium carbonate equivalents. In some cases, a landward salinity inversion occurs
with brackish marshes formed near the coast and saltwater marshes developing
farther inland (Martini, 2006). Salinity of inshore seawater is often low (about
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12 ¢ of dissolved solutes per litre of soil solution), because of the inflow of
freshwater from large rivers that drain into Arctic seas. The more seaward sections
of marshes are less saline than the landward sections where disturbance, lack of
tidal cover in summer, and drying out of the terrain can produce extreme
hypersaline soils (about 120 g of solutes per liter of soil solution), which are
devoid of vascular plants (Iacobelli and Jefferies, 1991). In southern James Bay,
the inland more saline marshes located beyond the reach of storm surges derive
salt from groundwater desalinating marine argillaceous silts of the substrate (Price
and Woo, 1988).

In the mid- to high-Arctic zones, salt marshes open to the sea are generally poorly
developed and infrequent. The coasts are affected by storm waves during the period
of open seawater and commonly develop beach ridges, spits, and barrier beaches. On
the isostatically rising lands, the beach ridges show various height and spacing. They
alternate with interridge lows occupied by shallow lakes and ponds (Figure 8). Sparse
vegetation grows in these interridge coastal wetlands, which may be described as true
oases where they occur in the northernmost polar deserts.

Wetlands with numerous interlaced channels and lakes separated by patterned
grounds develop on Arctic deltas, particularly along the Beaufort Sea (such as those
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Figure 7 Effect of ice push and erosion on salt marshes. (a) Freshly developed ice push
structures in high tidal flats, precursors to a more mature, pond-riddle marsh. (b) Mature salt
marsh with jigsaw pattern that has developed because of formation of pools initiated by ice
action.

Figure 8 Coastal ridges of Igloolik Island in northwest Foxe Basin, Nunuvut, in the
mid-Arctic Zone of Canada.

of the Colville and Mackenzie rivers; Figure 9a) and along the Arctic Russian coast
(such as those of the Lena River (Figure 9¢,d) and Kolyma River). Pingos (small
conical hills with a core of solid ice) develop in shallow lakes where the coastal areas
are low lying, such as in the Mackenzie River delta (Figure 9b).

Thermokarst greatly affects Arctic coastal zones, but the change in the landscape
differs depending on rates of uplift relative to sea-level rise. For example, the coastal
plain of southeast Foxe Basin, the Arctic Coastal Plain of Alaska, and the Mackenzie
River delta are characterized by numerous thermokarst lakes. There sea-level rise
outpaces any residual postglacial isostatic rebound, and during the ensuing marine
transgressions, considerable coastal erosion occurs and the coastal lakes become
breached and invaded by the sea (Figure 10c,d; Ruz et al.,, 1992; Wolfe et al,,
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Figure 9 Coastal wetlands associated with polar river deltas. (a,b) Interlaced channels, lakes
(several are thaw lakes) in the Mackenzie River Delta, Northwest Territories, Canada [(a) from
NASA and (b) aerial view of part of the delta with pingos developed in a coastal lake, from
Canadian Geological Survey]. (c,d) Interlaced channels, thaw lakes, and patterned ground of
the Lena River delta, Russia [(c) from NASA; (d) aerial view of well-developed patterned
ground in interchannel areas, adapted from Williams (1994)].

1998). Local salt marshes can develop inside the newly formed, protected embay-
ments. In the Foxe Basin, instead, the land is still undergoing isostatic uplift and the
thaw lakes of the coastal tundra remain isolated and are only locally breached and
joined by creeks (Figure 10a,b).
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Figure 10 Thermokarst structures in coastal zones. (a) Thaw lakes in the Arctic Coastal Plain,
Cape Harlett, Alaska (adapted from Bowen, 2005). (b) Breached thaw lake Mackenzie River Delta
(after Ruz et al, 1992). (c,d) Isolated lakes in Great Plain of the Koukdjuak, southeastern Foxe
Basin, Nunavut, Canada; (c) satellite image of the entire plain; (d) air view of part of the plain.

6. VEGETATION OF POLAR COASTAL WETLANDS

Environmental conditions such as cold climate and icy conditions within the
immediate coastal zones are often severe enough to restrict species richness.
Furthermore, regional development portends a likely future scenario where some
low-lying sedimentary coastlines and their associated biota become increasingly
vulnerable to rise in sea level and the occurrence of tidal surges associated with
global climate change. Other damaging oceanographic changes are likely to occur.
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For example, the present mean annual discharge of freshwater to the Arctic Ocean
and the Hudson Bay is estimated at 5,250 km>/ year (Shiklomanov et al., 2000), and
significant increases (up to 30%) in discharge rates are projected to occur in response
to climatic warming (Walsh et al., 2005). These changes in runoff will aftect water
levels, salinity, and nutrient fluxes in estuarine wetlands, all of which may be
expected to alter biological production and biodiversity (Walsh et al., 2005). The
extent to which the Arctic biota present at this interface between terrestrial and
marine systems can adapt (genetic response) or modify behavior patterns (pheno-
typic plasticity) to this ongoing change is largely unknown.

Sea ice persists until late spring (mid-June) on many shores, which restricts plant
growth in the early growing season. At that time, most sea ice is located at the
seaward end of marshes and its presence may protect the lower marsh vegetation
from grubbing by geese (Section 7.2.1). Ice rafting is common when the ice breaks
free of the shore at melt. The underlying sediment and vegetation are still frozen to
the base of the ice and are carried to different locations in melt or tidal water. The
remaining exposed sediment may be colonized by inward clonal growth from
adjacent intact graminoid swards.

The only studies of the nutritional status of Arctic salt-marsh soils are those
conducted in the southern Hudson Bay region, where the results indicate that the
soils are severely nitrogen-limited for plant growth (Cargill and Jefteries, 1984;
Ngai and Jefferies, 2004). Addition of ammonium or nitrate salts leads to a rapid
increase in the aboveground biomass in summer, but quickly growth becomes
phosphorus-limited because of a colimitation of this element when nitrogen short-
age is alleviated (Cargill and Jefferies, 1984). For the immediate coastal freshwater
mires, mostly poor fens, plant growth is limited by both nitrogen and phosphorus
(Ngai and Jefteries, 2004).

The plant species richness of Arctic and sub-Arctic coastal salt marshes is low
compared to temperate marshes, and prostrate graminoids dominate the vegetation.
The common vascular species that colonizes suitable sites along low-lying, muddy
seashores throughout circumpolar regions 1s Puccinellia phryganodes (Figure 11a; Hultén,
1968). In Arctic North America, plants are triploid and although they flower, seeds are
not produced. In northern Fennoscandinavia and in the White Sea region of the
Russian Federation, there are reports of tetraploid races of this grass, but it is not
known if seed set occurs (R.M.M. Crawford, personal communication). Hence, at
least in North America and northern Russia, plants are dispersed by clonal propagation.
Individual leaves, shoots, and tillers are able to establish in soft sediment and develop
into plants (Chou et al., 1992). Individuals are extremely resilient to environmental
stressors; they can survive encased in pack ice for months and have been grown
successfully in an anaerobic jar in an atmosphere of nitrogen for a number of weeks
(Crawford et al., 1994; Crawtford and Smith, 1997). Another widespread circumpolar
species is Carex subspathacea (Figure 11b) and this includes the closely related species,
Carex salina and Carex ramenskii, which may be variants of C. subspathacea. The species
appears to be less salt tolerant than P. phryganodes and tends to occur in areas that receive
fresh or brackish drainage water from adjacent lowlands. Unlike the grass, C. sub-
spathacea can grow in anoxic soils where drainage is impeded. Seed set is episodic and
most growth occurs via clonal reproduction. Both graminoids have well-developed
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Figure 11 Typical plants of Arctic and sub-Arctic coastal marshes of James and Hudson
bays. (a) P. phryganodes colonizing plants of salt marsh (inset: inflorescence from Aiken et al.,
2003; Dalwitz et al, 2003). (b) C. subspathacea (adapted from Aiken et al., 2003; Dalwitz et al.,
2003). (c) H. tetraphillabrackish marsh. (d) Thick silt deposits trapped by H. teraphilla.

rhizomatous and/or stoloniferous systems and the fine root systems are confined to the
upper soil layers (<7.5 cm). Other species that are common include Triglochin palustris
and Triglochin maritima (the former grows more seaward than the latter), Cochlearia
officinalis, Plantago eriopoda, Potentilla egedii, Ranunculus cymbalaria, Stellaria humifusa,
Carex ursina, Carex maritima, and Festuca rubra (Kershaw, 1976; Jefferies, 1977; Jefferies
et al., 1979). All flower infrequently but seed set is uncommon and depends on
prevailing local weather conditions. Weather conditions are also important in the
previous year when flower buds are laid down in most species. There have been few
studies of the seed bank in Arctic and sub-Arctic salt marshes (Staniforth et al., 1998;
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Chang et al., 2001). The results show that the composition of the vegetation and the
soil seed banks are only loosely correlated (approximately 50%), reflecting the poor
contribution of the dominant graminoid species mentioned above to the seed bank.
Some species are overrepresented in the soil seed bank compared with their abundance
in the vegetation. They are weedy species typical of degraded or disturbed soils. Seed
banks in impacted and fragmented sites do not recover quickly (Chang et al., 2001).

The annual growth habit is confined to the low Arctic, generally close to the
Arctic/sub-Arctic boundary. Within salt marshes, three species are represented: Sali-
cornia borealis, Koenigia islandica, and Atriplex patula, which mostly grow on an organic
substrate in the upper levels of salt marshes or in supratidal marshes (flooded by seawater
only during storm surges) but only set seed in favorable years. S. borealis does not have a
well-developed long-term seed bank, and annuals are not the primary colonizers of
exposed mudflats, as in temperate salt marshes. This functional group of annuals is a
prime candidate to study the response of plants in the low Arctic to climate change.
There are indications that S. borealis is spreading north on the Cape Churchill Penin-
sula, Manitoba in the last decade, but much of this spread may be related to the
loss of vegetation and exposure of sediments as a result of goose grubbing (see
below). Where salt marshes grade into beach ridges or dunes, Leymus mollis var. arenarius
is common. This ecological equivalent of marram grass (Ammophila arenaria) in tempe-
rate latitudes is widespread in well-drained, disturbed, sandy habitats in the Arctic.
Other species that occur in this type of habitat where there is some soil organic matter
include F. rubra and the related species, such as Sedum rosea, Parnassus palustris, Primula
stricta, Bartsia alpina, Polygonum vivipara, and Chrysanthemum articum.

Because of the large outflow of freshwater from rivers, brackish conditions often
prevail in the tidal reaches of the estuaries and on open marine coasts close to the river
mouths. The salinity ranges from about 3 g of solutes per liter up to 12 g/L. The range is
the result of the movement of the tidal salt wedge along the lower reaches of the rivers.
Because of the high rates of sedimentation in some estuaries associated with the
deposition of the sediment load from rivers and the brackish conditions that prevail,
soft sediments are often available for colonization by plants intolerant of full salinity. In
these muddy estuaries, species such as Hippuris tetraphylla, Hippuris vulgaris (less salt
tolerant), T. palustris, Potamogeton filiformis, P. pectinatus, C. officinalis, and R. cymbalaria
readily establish in soft sediment or on shallow river bottoms if the outflow is not rapid.
This flora is not confined to the vicinity of river mouths, but can occur in coastal areas
beyond the intertidal zone where relict salt or brackish ponds are present as a result of
isostatic uplift. Hippuris species develop an extensive rhizome system, and the stands of’
shoots produced by clonal propagation are very effective at trapping soft sediment,
leading to a rapid change in coastal topography (Figure 11c,d).

7. FAUNA OF POLAR COASTAL WETLANDS

Although species diversity in the Arctic is considered relatively low compared
to other regions, the Arctic terrestrial fauna nevertheless contains some 6,000
species, which is about 2% of the global total (Chernov, 1995; Callaghan et al.,
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2005). From an ecological point of view, the fauna of polar coastal wetlands can be
divided into two basic categories: an infauna consisting of organisms that live their
life cycles within or in close association with the wetland; and a second group, an
exfauna that makes use of the resources within the wetland on a seasonal basis, and
whose members are migratory or nomadic. Polar coastal wetlands, in fact, play a
critical role in the life cycles of many migratory animals, particularly birds; many
species of waterfowl and shorebirds use Arctic and sub-Arctic wetlands both for
breeding and/or as stopovers on migration to reach their breeding areas. The flora
and infauna of the wetlands provide the food resources upon which the birds
depend to complete their annual cycles.

7.1. Invertebrate fauna

Among invertebrates, primitive groups are better represented (such as springtails:
400 species, 6% of the global total of species) than advanced groups (such as spiders:
300 species, 0.1% of the global total). Typically, there is a reduction in invertebrate
species and families with increasing latitude, and the distribution of some groups,
such as spiders, is patchy (Chernov, 1995; Pickavance, 2006). The common
invertebrate species in the far north tend to be widely distributed and only a few
species may become dominant at high latitudes (e.g., 12 species of springtail in the
northern Taimyr, Russia; Chernov and Matveyeva, 1997). Although there has
been a steady increase in the description of invertebrate assemblages at site-specific
locations within the Arctic, the roles of individual species and functional groups in
community dynamics are poorly understood.

Coastal wetlands and their fauna fall into two broad categories: those at or near
the shore involving marine or saltwater-influenced habitats, and those occurring
slightly inland involving mostly brackish and freshwater habitats.

7.1.1. Invertebrate fauna of coastal saline areas

Marine intertidal invertebrates and other organisms have received limited study in
many Arctic and sub-Arctic areas (although they are highly important food sources
for a variety of birds, fish, and even mammals). The extent of intertidal areas that
develops in different regions will depend on the geomorphology and sedimentary
characteristics of the area, and intertidal organisms not only have to survive severe
climatic conditions, but are likely to be subjected to annual removal or disruption
caused by ice scour, which can affect the flats themselves and the near-shore waters
to depths of up to 5 m. In James and Hudson bays, for instance, the bivalve Macoma
balthica is the most common burrowing mollusk and much of the intertidal stock is
removed by ice and wave action during the winter and spring but is replenished by
spatfall (larval production) originating from subtidal populations each year.
M. balthica has an extensive geographic range, inhabiting temperate to Arctic coastal
waters in the North Atlantic and North Pacific oceans, and forms a prominent food
resource for birds and fish in intertidal areas in Iceland, Hudson and James bays, and
Alaska. Densities in James Bay average 2,000-3,700 individuals/m? with highest
recorded densities in zones of eelgrass Zostera marina of up to 12,800 individuals/m>
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(Martini and Morrison, 1987). These densities are consistent with those recorded in
other areas: Alaska, maximum 4,000 individuals/m? (Powers etal., 2002); St Lawrence
Estuary (southeast Canada), maximum 2,700 individuals/m?* (Azouzi et al., 2002); and
Dutch Wadden Sea, 3,250 individuals/m? (Piersma and Koolhaas, 1997). Sub-Arctic
tidal flats may be characterized as having fairly high densities of infauna invertebrates,
but low species diversity. In James Bay, the intertidal fauna consist principally of M.
balthica and the gastropod Hydrobia minuta (Martini et al., 1980), while on the Copper
River Delta, Alaska, M. balthica, the amphipod Corophium salmonis, and the polychaete
Eteone longa account for over 95% of individuals identified on the mudflats (Figure 12;
Powers et al., 2002). Other organisms occurring in James Bay and other sites include
gastropods, mussels, limpets, nematodes, oligochaetes, and polychaetes, as well as
foraminifera, copepods, ostracods, amphipods, cladocerans, ectoprocta, and barnacles
(Martini et al., 1980). Oligochaete worms and Dipteran larvae are numerous along the
edge of the short-grass salt marsh (consisting primarily of P. phryganodes) and are
important food items for shorebirds. Oligochaetes (family Naididae, genus Paranais)
numerically account for about 63% of the macrobenthos in the salt marshes, and their
distribution is strongly correlated with electrical conductivity and the organic carbon
content of the sediments. In the coastal ponds, Dipteran larvae of the families Chir-
onomidae, Heleidae, and Tipulidae occur in densities of up to 5,500 m > (Clarke,
1980).

Intertidal mudflats in high Arctic locations have received less study. It would appear
that numbers and variety of organisms are low, as environmental conditions are
correspondingly more severe than in sub-Arctic localities. At Zackenberg in central
northeast Greenland, coastal mudflats contain low to moderate densities of nematodes,
tardigrades, and crustaceans, and these are preyed on by shorebirds during July and
August (Caning and Rausch, 2001; Meltofte and Lahrman, 2006). Red knots (Calidris
canutus) have been observed feeding on crustaceans on intertidal mudflats on the central
east coast of Ellesmere Island, Canada, during the postbreeding period, and both knots
and ruddy turnstones (Arenaria interpres) feed on crustaceans along shorelines in the
Alert area on northeast Ellesmere Island, Canada.

At the other end of the globe, there has been little study of intertidal areas in sub-
Antarctic wetlands and mudflats. The Atlantic mainland coast of Tierra del Fuego,
although surrounded by the sub-Antarctic oceanographic zone, is cool temperate
in terms of climate and vegetation, and it does contain important coastal wetlands.
At Bahia Lomas, in the Chilean sector of Tierra del Fuego near the entrance to the
Strait of Magellan, preliminary investigations of the infauna show that polychaetes,
bivalve mollusks, isopods, and amphipods are predominant in sandy habitats, their
abundance dependent on sediment size and type (Ponce et al., 2003).

7.1.2. Invertebrate fauna of near-coast, freshwater areas

In areas of inundated less regularly by the tide and farther inland, a rich insect fauna
develops. In southern James Bay, Kakonge et al. (1979) identified 318 species of
invertebrates (105 families, 14 orders) among which mosquitoes and biting
flies were a prominent component. The insects play an important role in
ecological processes in the marsh, including contributing to soil fertility through
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Figure 12 Locations of wildlife places mentioned in the text in the Arctic and sub-Arctic. (AL,
Alert; AN, Arctic National Wildlife Reserve, Alaska; BI, Bylot Island; CH, Churchill,
Manitoba; CP, Chukotka Peninsula; CR, Copper River Delta, Alaska; DS, Dewey Soper
Migratory Bird Sanctuary, Baffin Island; EI, Ellesmere Island; FB, Foxe Basin; HB, Hudson
Bay; JB, James Bay; LR, Lena River Delta, Russia; MR, McConnell River Migratory Bird
Sanctuary; NL, Nelson Lagoon, Alaska; QM, Queen Maud Gulf Migratory Bird Sanctuary;
RL, Rasmussen Lowlands; SI, Southampton Island; W1, Wrangel Island; WS, Wadden Sea; YF,
Yakutat Forelands, Alaska; YK, Yukon and Kuskokwim river deltas Alaska; ZA, Zackenberg,
Greenland) (after UNEP/GRID-Arendal, 2005).

aeration and transfer of organic particles into the soil, litter breakdown (by spring-
tails, mites, nematodes, rotifers, and some exotic earthworms), the role as major
secondary producers, and the function of providing a food resource for migrating
birds. Mosquitoes were reported to occur in densities of 5 million per acre
(13.35m/ha) on the coast of Hudson Bay (West, 1951). Chironomids often
reach densities of many thousand per square meter in freshwater and brackish
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water (Pinder, 1983), and they are a major component of the macrobenthos in
ponds at northern latitudes (Andersen, 1946; Butler et al., 1981) as well as being an
important component of the diet of shorebirds (Summerhayes and Elton, 1923;
Holmes and Pitelka, 1968) and waterfowl (Bergman and Derksen, 1977; Danell and
Sjoberg, 1977). Arthropod species characteristic of the sub-Arctic and the Boreal
forest are frequently transported on southerly winds to the low Arctic where they
survive the summer (Danks, 1981).

7.2. Vertebrate fauna using coastal wetlands

7.2.1. Avifauna
Birds form one of the most prominent components of the fauna using coastal
wetlands. Most species may be categorized as waterbirds, principally waterfowl
such as ducks, geese (12 breeding species), and swans, but also loons, shorebirds,
gulls, and terns. Other types of birds including birds of prey (such as owls and
raptors) and passerines also use coastal wetlands. Within the Arctic, 450 species of
birds, which make up the majority of vertebrate species, have been recorded
breeding (Callaghan et al., 2005); the majority are migratory and migrate in winter
to southern latitudes and many inhabit coastal wetlands (Schmiegelow and Mén-
kkonen, 2002). The total number of wetland birds that breed in the Arctic is
estimated at between 85 and 100 million individuals (Callaghan et al., 2005).
Polar wetlands not only serve as breeding grounds for many millions of water-
birds, but also play a key role as important migration stopover sites enabling the
birds to travel between their breeding grounds and their more southerly wintering
areas. The migration systems connecting southern wintering and Arctic breeding
areas are generally known as flyways — worldwide there are some 8 recognizable
flyway systems for waterfowl (Figure 13) and 10 (nine linking Arctic and Boreal
breeding areas with wintering zones and one in South America linking austral

Figure 13 Major global flyway systems used by waterbirds (adapted from ACIA, 2004).
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sub-Antarctic, cool-temperate, breeding, and wintering areas) for shorebirds
(Figure 14). Some birds travel between Arctic and sub-Arctic wetlands to sub-
Antarctic wetlands during the course of their annual travels: the North American
red knot (C. canutus rufa) (Figure 15a), for instance, migrates from breeding areas in
the central Canadian Arctic, through areas along the coasts of Hudson and James
bays, through temperate and tropical areas, to wintering areas on the cool-temperate,
intertidal areas of Tierra del Fuego at the southemn tip of South America (Morrison
and Harrington, 1992; Morrison, 1984; Morrison and Ross, 1989). Areas supporting
important concentrations of shorebirds worldwide are located near coastal regions of
high productivity (Butler et al., 2001).

East
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F\’/;IEi?itc Australanan
flyway flyway
Indian
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Interior
American Medi-
Patago- flyway terranean
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West
Atlantic East
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Figure 14 Major global shorebird flyway systems linking arctic breeding wetlands with
“wintering areas” some of which are sub-Antarctic wetlands (adapted from Piersma and
Lindstrom, 2004).
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Figure 15 Birds utilizing the polar coastal wetlands. (a) Red knots in flight. (b) Lesser snow
geese, light-colored, flightless adults in the background during breeding period, and darker
colored goslings in the foreground.

Bird breeding areas. Geese form a prominent component of the avifauna
using polar coastal wetlands, with populations of six species totaling an estimated
5.7 million birds in the North American Arctic and nine species totaling an
estimated 2.5 million birds in the Eurasian Arctic (Zdckler, 1998) in the early
1990s. Some geese occupy a relatively restricted part of the Arctic, while others
have a wide geographical distribution. For instance, about 95% of Ross’s geese
(Chen rossii) historically nest in the Queen Maud Gulf Migratory Bird Sanctuary
in the central Canadian Arctic (Kerbes, 1994; Ryder and Alisauskas, 1995;
Kerbes et al., 2006), whereas lesser snow geese (Chen caerulescens caerulescens)
breed from northwest Greenland, through the Canadian and Alaskan Arctic, to
Wrangel Island and the Chukotka Peninsula in Russia (Mowbray et al., 2000)
(Figures 12, 15b). In the North American Arctic, hundreds of thousands of geese
and other waterfowl nest in areas such as the Yukon and Kuskokwim river deltas
[which support most of the world’s emperor geese (Chen canagica)|, Arctic
National Wildlife Refuge in Alaska, the Rasmussen Lowlands, Queen Maud
Gulf Migratory Bird Sanctuary, McConnell River Migratory Bird Sanctuary,
and Dewey Soper Migratory Bird Sanctuary in the Canadian Arctic. Similar
numbers are supported in the Eurasian Arctic in areas such as the Lena River
delta in Russia (Gilg et al., 2000) and in sub-Arctic wetlands in Iceland (Rowell
and Hearn, 2005) (Figure 12).

Shorebirds also form a prominent component of the breeding avifauna of
sub-Arctic and Arctic wetlands. Zockler (1998) reported 13 species of calidrid
sandpipers with an estimated population of 8.1 million individuals that breed in
the North American Arctic (including Greenland), while 17 species involving 6.3
million individuals breed in the Eurasian Arctic. When more southerly areas
around Foxe Basin, Hudson Bay, and James Bay are included, some 27 species
of shorebirds use central areas of Canada (Morrison and Gaston, 1986). Some
species nest directly in wetland habitats, such as red phalarope (Phalaropus fulicarius)
and dunlin (Calidris alpina), whereas others, such as ruddy turnstone and red knot,
nest in nearby upland habitats. In the latter cases, the upland (tundra) habitats used
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for nesting are often found in close association with wetter habitats, where the
birds feed and raise their young. Shorebirds breed right to the northern limit of
land in North America and Eurasia, although it is in the more southerly large
wetlands that the highest numbers and diversity are found, such as Yukon and
Kuskokwim river deltas in Alaska, Rasmussen Lowlands in Canada, and coastal
wetlands in eastern Siberia.

Bird staging areas. During migration, sub-Arctic and Arctic coastal habitats
support equally large populations of waterfowl and shorebirds en route to and
from the breeding grounds. In many cases, geese and other waterfowl acquire
nutrients that they bring to the breeding grounds farther north in the form of
body stores, which are used to form eggs or enhance survival (Alisauskas and
Ankney, 1992). A similar phenomenon occurs with shorebirds. In Iceland, for
instance, red knots en route to the eastern Canadian high Arctic from European
wintering quarters, not only accumulate large amounts of fat but also alter their
physiological makeup, increasing the size of organs and muscles used for flying
(pectoral muscles) and decreasing the size of organs and muscles that are less
important during the flight (stomach, intestines, and leg muscles) so that they
transform themselves into virtual flying machines (Piersma et al., 1999). Not all
the stores are used during the flight, and an important function of the significant
amounts of fat and protein that remain on arrival in the Arctic appears to be to
enable the birds to retransform their physiological makeup into one suitable for
breeding [such as liver, heart (decreased during flight), stomach, and intestines
increase in size|, or perhaps for survival if early season conditions are difticult
(Morrison and Hobson, 2004; Morrison et al., 2005). These aspects of bird
migration emphasize the interconnected nature of the Arctic, sub-Arctic, and
other wetlands farther south. The ability of birds to acquire the needed stores
during migration has important survival implications. Shorebirds departing
Iceland in better than average condition were shown to have a higher survival
when faced with difficult weather conditions in the Arctic (Morrison, 2006;
Morrison et al., 2007), and conversely, shorebirds prevented from reaching
adequate departure weights at the final spring stopover area in North America
suftered significantly decreased survival (Baker et al., 2004).

Waterfowl also depend on food resources in sub-Arctic wetlands during
migration. Examples in North America include the Mid-Continent populations
of lesser snow geese and Atlantic brant (Branta bernicla) passing northward
through James Bay during the spring (Jefferies et al., 2003; Ward et al., 2005)
and European populations of brant using Icelandic stopovers en route to the
Canadian Arctic (Ward et al., 2005) as well as pink-footed geese (Anser brachyr-
hynchus) using wetlands in northern Norway en route to breeding grounds on
Svalbard (Drent et al., 2006; Glahder et al., 2006). In recent decades, habitats in
migration and breeding areas used by lesser snow geese and Ross’s geese in the
Canadian Arctic have been heavily damaged as a result of overgrazing by
the geese, which have undergone spectacular increases in population size. On
the wintering grounds in southern latitudes, the loss of coastal habitat and
freshwater wetlands (associated with changing land use) has led to the birds
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becoming heavily dependent on agricultural crops, particularly high-yielding
crops rich in nitrogen. Some species that have shown geometric population
growth, primarily in response to changes in modern agriculture, are the lesser
snow goose and Ross’s goose in North America (Abraham et al., 1996, 2005)
and the barnacle goose (Branta leucopsis) in Europe (Van Eerden et al., 2005;
Jefferies et al.,, 2006a). Winter counts of the Mid-Continent population of
snow geese increased in a geometric manner between 1970 and 2000, from
0.8 million in 1969 to 2.7 million in 1994, indicating that the entire population
was most likely between 4.5 and 6 million in the mid-1990s (Abraham and
Jetteries, 1997; Jefteries et al., 2003). At La Pérouse Bay near Churchill on the
Hudson Bay coast, the breeding colony increased from less than 2,000 pairs in
1968 to 44,500 pairs in 1997 (Jefferies et al., 2003). The main factors involved
appear to be the increased availability of food from agriculture, as well as the
availability of refugia from hunting, lower harvest rates, and possible
climate change on the breeding grounds (Jefferies et al., 2003; Kerbes et al.,
2006). The birds have, in eftect, escaped from density dependence in the coastal
marshes, and hunting losses (where hunting is permitted) have not been able to
keep pace with the increases in the population sizes of the different species
(Abraham et al., 1996).

With numbers of lesser snow geese exceeding 5 million, the large population
may be expected to have adverse effects on Arctic coastal vegetation, depending on
the densities of the birds and their foraging behavior (grazing, grubbing, shoot
pulling of sedges), which is related to bill size and shape. Grubbing, in which the
geese pull up the roots and rhizomes of the plants, and shoot-pulling lead to
destruction of the vegetation and often total loss of the selected graminoid
plants. The resulting physical and chemical changes in the exposed sediments and
the continued exposure to geese foraging alter habitat succession and recovery
(Abraham et al., 2005). Coastal wetland sites in the sub-Arctic in North America
are particularly vulnerable to such disturbance because they serve as sites for both
staging and breeding. During both of these phases of the annual cycle, the birds
need to feed heavily, especially in early spring, to regain resources expended during
migration and maintain or increase reserves for breeding. In North America, the
Mid-Continent population of the lesser snow goose that breeds in the eastern
Canadian Arctic has had a dramatic impact on coastal wetland plant assemblages
and soils at a large spatial scale (Jefferies et al., 2003): vegetation loss has been so
extensive that it can be readily detected by remote sensing (Jano et al., 1998,
Jefteries et al., 2003; Didiuk and Ferguson, 2005, Jefteries et al., 2006b; Alisauskas
et al., 2006). The loss of vegetation is triggered by geese grubbing for roots and
rhizomes in thawed ground in early spring. However, it is the subsequent abiotic
changes, including the development of hypersalinity, loss of organic matter, and
compaction of sediments that limit the potential for recolonization. This is com-
pounded by biotic factors such as loss of the seed bank, the absence of sexual
reproduction in P. phryganodes (at least in North America), and irregular seed set in
C. subspathacea. Because of the cumulative impact of grubbing, patches of exposed
sediment coalesce into larger and larger units of exposed sediment largely devoid of
vegetation. Reestablishment of vegetation is long-term and requires erosion of
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hypersaline, consolidated sediment and the buildup of unconsolidated soft
sediment, in which plants can establish themselves. A similar loss of vegetation is
occurring in coastal freshwater marshes, although the abiotic and biotic processes
are difterent (Jefferies et al., 2003; Alisauskas et al., 2006). Erosion of peat, following
loss of vegetation, can lead to exposure of underlying glacial gravels and marine
clays in coastal locations and can alter the trajectory of succession (Handa et al.,
2002).

For the greater snow goose (C. caerulescens atlantica) breeding in the northeastern
Canadian Arctic, grazing pressure on graminoids during the summer is high and
reduces the plant production in wetlands, although the vegetation has not been
damaged past the point of recovery, as observed in areas used by lesser snow goose
populations (Gauthier et al., 2006). Goose abundance on Bylot Island, one of the
largest breeding colonies of the greater snow goose, was still at only half the
estimated carrying capacity of the island’s wetlands in 1997. Similarly, the European
population of the barnacle goose is considerably lower than that of the North
American snow goose (Madsen et al.,, 1999), and they have had relatively little
impact on coastal habitats.

During autumn migration, many shorebirds and waterfowl use the coasts of
Hudson and James bays as well as other locations in the eastern Canadian Arctic to
build up body reserves for the flight south (Morrison and Harrington, 1979;
Morrison and Gaston, 1986). Shorebird distribution in James and Hudson bays
was directly related to food abundance for several species, including semipalmated
sandpiper (Calidris pusilla), red knot, and hudsonian godwit (Limosa haemastica), a
relationship that was evident at several geographical scales (locally across the
marsh, over 15km stretches of coast, and over several hundreds of kilometers)
(Morrison, 1983, 1984; Morrison and Gaston, 1986). In northern Alaska, a
number of species of shorebirds move from tundra to littoral habitats after
breeding, and coastal flats are important during the autumn migration (Connors
et al., 1979; Andres, 1994). In western Alaska, 17 species of shorebirds regularly
use the intertidal flats of the Yukon and Kuskokwim river delta during spring and
fall; peak counts reached some 300,000 birds, consisting mostly of dunlins,
western sandpipers (Calidris mauri), and rock sandpipers (Calidris ptilocnemis), and
an estimated total of 1-2 million shorebirds were thought to use the area each
year (Gill and Handel, 1990). Many millions of shorebirds used the Copper River
delta flats during spring migration (Islieb, 1979; Bishop et al., 2000) and hundreds
of thousands used the Yakutat Forelands area (Andres and Browne, 1998) in
Alaska. Some 20 species of shorebirds used intertidal habitats in Nelson Lagoon
on the Alaska Peninsula during fall migration (Gill and Jorgensen, 1979). Such
areas are of critical importance during southward migration of species such as the
bar-tailed godwit (Limosa lapponica), which accumulates up to 55% of its body
weight in fat and undergoes physiological changes involving reduction in gut sizes
before a spectacular migration across the Pacific Ocean, which can involve non-
stop flights of 11,000 km lasting 6 or more days to wintering areas in New
Zealand and eastern Australia (Piersma and Gill, 1998; Gill et al., 2005; Gill
et al., 2006). The critical importance of these coastal wetlands in the life cycles
of a variety of birds is clear.
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7.2.2. Mammal fauna

A variety of mammals occurs in polar coastal wetlands, including bears (polar bears,
grizzly bears, and brown bears), Arctic and red foxes, wolves, wolverines, caribou,
arctic hare, mink, weasels, lemmings, and voles. While less numerous than water-
birds, mammals play an important role in ecological dynamics of Arctic systems.
Lemmings and other rodents undergo pronounced cyclical patterns in abundance,
and the associated responses of predators such as arctic foxes (Alopex lagopus) in turn
influences the success of other birds and animals. In years of high lemming
abundance, for instance, Arctic foxes spend much of their time hunting the
lemmings so that there is relatively little predation pressure on nesting birds; in
contrast, in low lemming years, shorebirds and their nests may be heavily depre-
dated by foxes. Breeding success of the birds on the breeding grounds can be
affected to the extent that the lemming cycles can be detected by observing the
number of shorebird young reaching migration and wintering areas (Underhill,
1987; Underhill et al., 1989; Blomqvist et al., 2002); pomarine jaegers (Stercorarius
pomarinus), which depend on lemmings for food, may not breed at all in some areas
in low lemming years (Maher, 1970). In the Canadian Arctic, lemming cycles may
be less synchronized over large areas than in the Russian Arctic, although they are
clearly evident in the high Arctic.

Polar bears (Ursus maritimus) are a top predator in marine ecosystems and are
highly dependent on the presence of sea ice which provides habitat for their
principal prey, ringed seals (Phoca hispida), in many regions of the Arctic (Stirling
et al., 1999, Derocher et al., 2004). During the summer when the sea ice melts,
polar bears come ashore in coastal areas. During this period when the normal diet of
seals is not available, they exist on accumulated fat reserves and become fairly
omnivorous predators and scavengers, feeding on berries, seaweed, and adults,
young, and eggs of colonial nesting seabirds and waterfowl [including thick-billed
murres (Uria lomvia), little auks (Alle alle), gulls, geese, ducks, and sometimes more
terrestrial species]. Polar bears are occasionally cannibalistic and have been also
known to hunt large terrestrial mammals such as caribou and muskox (Owvibos
moschatus) (Stempniewicz, 2006). Polar bears can cause extensive damage to colo-
nies of seabirds nesting in coastal locations; at East Bay, Southampton Island, in
1997, two bears destroyed an entire common eider (Somateria mollisima) colony,
eating an estimated 12,000 eggs, rendering themselves temporarily immobile in the
process (H.G. Gilchrist, personal communication).

The predicted thinning and reduced coverage of Arctic sea ice resulting from
climate warming are likely to substantially alter sea ice ecosystems (Loeng et al.,
2005) and could result in deleterious effects on availability of food sources for polar
bears. These predictions reflect the strong coupling between marine and terrestrial
systems in response to climate change. Such eftects are likely to be most evident at
the southern distribution limit of polar bears, where early melt and late freezing of
sea ice extend the period when the bears are on land, during which time little
teeding occurs. Recently, the condition of adult bears has declined in the southwest
region of the Hudson Bay and, the number of first-year cubs as a proportion of the
population has fallen associated with the early breakup of sea ice and the cubs
coming ashore in poor condition (Stirling et al., 1999; Derocher et al., 2004).
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Polar bears are increasingly likely to seek alternative food sources as the extent
of sea ice declines and inshore time increases under climate warming (Stirling and
Parkinson, 2006), although it is not clear to what extent individuals may be able to
modify their feeding habits to utilize new food sources. For example, unpublished
data (Tan Stirling, per.com.) indicate harbor seals (Phoca vitulina), which occur on
rocky coasts, may be increasing in western Hudson Bay, possibly in response to
climate warming and that this species is becoming more important in the diet of
polar bears.

In North America, caribou (Rangifer tarandus) herds use coastal wetlands and
plains for both calving and wintering; in the summer, coastal areas are important for
avoiding predators and biting and parasitic insects. Furthermore, caribou diets shift
in summer from the lichen dominated winter diets to vascular plants, including
wetland sedges, grasses, and other species.

8. ENVIRONMENTAL HAZARDS

Most polar coastal wetlands have been subject to few direct and indirect
anthropogenic influences compared to their temperate counterparts. They are,
however, environments that are easily impacted and modified by either natural
disturbances or human activities.

Climate changes will affect these wetlands directly, as a result of rises in
temperature and in amounts of precipitation that will affect growth of vegetation
and the reproductive success of plant populations. There are also a plethora of
indirect effects associated with the melting of sea ice and permafrost and changes in
salinity and hydrology. For example, low-lying coasts, where wetlands occur, are
vulnerable to the deleterious effects of the increased incidence of storm surges and
the destructive effects of wave action in the absence of sea ice (Callaghan et al.,
2005; Loeng et al., 2005; Cahoon et al., 2006). The direct effect of climate
warming on melting and the changing regime of sea ice will strongly affect animal
behavior, possibly leading to extinction of specialized species like polar bears in
some areas of the Arctic (Derocher et al., 2004).

Human activities may impact drastically on polar coastal wetlands because of the
rapidity of the imposed changes. Rapid adverse effects are associated with mega-
hydrological projects, resource extraction (hydrocarbon exploration and exploita-
tion, mineral mining for lead zinc, gold, and diamonds), ecotourism, fishing, and
increased hunting and gathering by indigenous people (Anisimov et al., 2001).

Large-scale hydrocarbon exploration and production is ongoing in areas on-
and offshore in the Arctic Coastal Plain of Alaska, the Mackenzie River delta, the
Pechora Basin, the Lower Ob Basin, and the Western Siberian Plain. These
activities adversely impact wetland ecosystems and their wildlife because of the
necessary infrastructure and the disturbances created at the different locations.
A more ominous impact is related to the pollution of the whole coastal and marine
environment that can derive from oil spills during exploration and the marine
transport of petroleum through a possible ice-free Northwest or Northeast Passage
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(Anisimov et al., 2001). Both heavy metals and POPs (Persistent Organic Pollutants)
are transported by water and air, and both bioaccumulate in trophic food webs and in

wetland soils, thereby posing environmental risks to wildlife and human populations
(AMAP, 2002).

9. CONCLUSIONS AND RESEARCH PRIORITIES

Earth is continuously changing. During the Quaternary Era, continent-wide
glaciers developed and waned several times responding to alternating cold and
warm periods. The biota, including human populations, adapted to these changes
by migrating and recolonizing land aftected by ice. However, humans are now
capable of affecting rates of climatic and geochemical (pollution) changes that
already are impacting polar regions, and will continue to do so. With amplification
of temperature, the global warming will be more evident in the Arctic, and it can
be expected to reduce the cover of both sea and land ice. As a result of changes in
albedo and heat storage with the melting of ice, the redistribution of heat at the
global scale can modify atmospheric properties and oceanic currents. This will
probably lead to adverse consequences such as changes in atmospheric precipita-
tion, increased frequency of storms, and a global sea-level rise. Coastal Arctic and
sub-Arctic environments and the associated biota are particularly vulnerable to
these climatic changes. The majority of human settlements in the Arctic are located
on low-lying coasts and they will also be adversely affected by storms and tidal
surges. The melting of the sea ice and the opening of Arctic sea routes present
further possible hazards for low-lying coastal regions and their biota. Pollution,
physical disturbance, and increased access to these remote localities are likely to
result in indirect changes, many of which are unforeseen at this stage.

Research priorities include the following.

1. Monitor rates of permafrost loss, and, in particular, map the ongoing northward
shift of the boundary between the continuous and discontinuous permafrost
zones (Tarnocai, 2006). This change is likely to lead to the partial drying of vast
peatlands and the release of greenhouse gasses (carbon dioxide and methane) to
the atmosphere and, thus, an increase in the rate of global warming. In addition,
shrubs and grasses are likely to replace the wetland flora of aquatic plants and
sedges. Such changes will affect the existing insect fauna and the availability of
suitable nesting and feeding sites for migratory waterfowl and passerines that nest
in the Arctic.

2. Improve and expand the determination of rates of isostatic land uplift and sea-
level rise using a network of stations, in order to predict relative sea-level
changes along coasts. This is especially important where severe coastal erosion
is taking place.

3. Monitor the effects of global change on coastal environments and the ability of
resident wildlife populations (such as vegetation, polar bears, foxes, and
lemmings) and migratory populations (most bird species, caribou) to adjust to
these changes. Recording of invasive species in northern latitudes associated
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with climate change is necessary. Increased attention needs to be paid to
traditional knowledge and its contribution to our understanding of past and
present changes in wildlife populations. More direct involvement of First
Nations’” people in research activities is needed.

4. Expand monitoring to understand the impact of local (oil exploration and
production, mining) and distant (long-range) transport of contaminants on
human activities (fishing, hunting on land and on sea ice, societal change).
Migratory birds, and waterfowl in particular, constitute a means of transport of
geochemical materials from the industrial, agricultural south to the northern
coasts.
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