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Abstract. Because the (st)age structure of a population may rarely be stable, studies of
transient population dynamics and population momentum are becoming ever more popular.
Yet, studies of ‘‘population momentum’’ are restricted in the sense that they describe the
inertia of population size resulting from a demographic transition to the stationary population
growth rate. Although rarely mentioned, inertia in population size is a general phenomenon
and can be produced by any demographic transition or perturbation. Because population size
is of central importance in demography, conservation, and management, formulas relating the
sensitivity of population inertia to changes in underlying vital rates and population structure
could provide much-needed insight into the dynamics of populations with unstable (st)age
structure. Here, we derive such formulas, which are readily computable, and provide examples
of their potential use in studies of life history and applied arenas of population study.
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INTRODUCTION

Population size is central to the fields of demography

and population biology. Demographers often study

population size because it can affect economies, policy,

social dynamics, and even natural resource supplies (Bos

et al. 1994, Fischer and Heilig 1997, United Nations

2003). Biologists pay special attention to population size

when trying to understand ecological processes, keep

small populations from going extinct, controlling pest

populations, and in management of populations that

provide hunting, fishing, and viewing opportunities as

well as world-market food resources (Caughley 1977).

Additionally, the change in population size over time

(i.e., population growth rate) describes the average

fitness and performance of the population (Fisher

1930, Sibly et al. 2002). Thus, population size is an

important parameter for many reasons.

In population modeling, it is common to assume a

stable population structure (i.e., the distribution of

abundance across age, stage, body size, sex, spatial

location, or other categories) and examine how under-

lying vital rates, such as fecundity and survival, affect

long-term population size and rate of growth (e.g., k).

Unfortunately, this assumption is rarely met in nature

(Fox and Gurevitch 2000). Population structure is

usually unstable (e.g., an underabundance of prime-

aged adults) resulting in transient dynamics (i.e.,

unstable short-term dynamics [Coale 1972, Clutton-
Brock and Coulson 2002]). Depending on the relative

overabundance vs. underabundance of particular phe-

notypic classes (e.g., adults vs. offspring), the initial

transient reaction to an unstable population structure

can lead to sudden and substantial increases or decreases

in population size (Caswell and Neubert 2005; Fig. 1a).

In addition to the particular instability of population

structure (Merrill et al. 2003), an organism’s generation
time will influence the rate at which stable population

structure is achieved and the magnitude of transient

fluctuations in abundance en route to the stable

dynamics (Koons et al. 2005). These unstable short-

term dynamics can in turn produce an inertial effect on

long-term population size causing it to be larger or

smaller than that of an otherwise equivalent population

that always has a stable population structure (Tulja-
purkar and Lee 1997), which we call ‘‘population

inertia’’ (see Fig. 1a).

The most commonly studied case of population

inertia is Keyfitz’s concept of population momentum

(1971a), which pertains to the special case when a

population’s vital rates undergo a change to the

stationary level (i.e., the level of lifetime individual

replacement; see Fig. 1b). Population momentum has

been studied extensively in human demography and its

effect has been shown to occur in many populations
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(e.g., Keyfitz 1971a, Frauenthal 1975, Mitra 1976,

Wachter 1988, Schoen and Kim 1991, 1998, Fischer

and Heilig 1997, Kim and Schoen 1997, Bongaarts and

Bulatao 1999, Li and Tuljapurkar 1999, 2000, Goldstein

2002, Schoen and Jonsson 2003). Biologists have

recently shown that population momentum (Hauser et

al. 2006, Koons et al. 2006a, b) and each of the

aforementioned aspects of transient dynamics will be

of critical importance in conservation and management

of wild populations because of the insight they provide

into dynamics of realistic populations with unstable

structure (Fox and Gurevitch 2000, Merrill et al. 2003,

Yearsley 2004, Koons et al. 2005, Mertens et al. 2006,

Caswell 2007). Population inertia is more general than

Keyfitz’s momentum and applies to growing, declining,

spatially structured, and density-regulated populations,

as well as those inhabiting stochastic environments

(assuming weak demographic ergodicity); however, it is

rarely considered in scientific studies (but see Tuljapur-

kar and Lee 1997).

Like population growth rate, population inertia can

influence chances of extinction as well as the time required

to achieve population goals (Koons et al. 2006b). Thus,

tools that relate change in underlying demographic

FIG. 1. (a) When a population’s structure becomes unstable, there is an initial transient reaction that can cause a sudden
increase or decrease in population size followed by transient fluctuations in size that decrease in magnitude as structure converges
to the stable population structure. Depending on the relative overabundance vs. underabundance of particular phenotypic classes
(e.g., adults vs. offspring), the eventual result of unstable population structure can be an inertial augmentation (solid lines) or
reduction (dashed lines) of population size relative to the size of an otherwise equivalent population growing (or declining, which is
not shown here) according to its stable population structure (dotted lines). Measures of population inertia are given in Derivation of
population inertia sensitivities. (b) Graphical examples of Keyfitz’s ‘‘population momentum,’’ which is just a special case of
population inertia for populations whose long-term rate of growth is stationary.
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parameters to change in population inertia could benefit

biologists as well as human demographers. The sensitivity

of population growth rate to changes in underlying vital

rates has a long history of use in demography and

evolutionary theory (Lewontin 1965, Hamilton 1966,

Demetrius 1969, Emlen 1970, Goodman 1971, Keyfitz

1971b, Mertz 1971), and Caswell’s (1978) discrete-time

sensitivity formula has made calculation of this metric

relatively simple for empiricists to use (e.g., van Groe-

nendael et al. 1988, Horvitz et al. 1997, Benton and Grant

1999; papers within Heppell et al. 2000). Analogous

analytical formulae for population inertia have not been

developed but could be useful for comparing the effects of

alternative policies or management actions on population

inertia and goals related to population size. Here, we

present such formulae for the sensitivity of population

inertia to changes in any vital rate or population structure.

Using examples, we show how these formulae can be used

to examine the implications of population inertia on the

abundance of populations open to migration (including

source–sink populations), the implications for conserva-

tion and management, and the relevance to comparative

live history analysis.

DERIVATION OF POPULATION INERTIA SENSITIVITIES

Population model and notation

We use boldface capital letters to denote matrices and

boldface lowercase letters to denote vectors. We use x̄ to

denote the conjugate of x, x> to denote the transpose of the

vectorx andx* todenote the complex conjugate transpose.

Our derivation is based on a linear, discrete, time-

invariant matrix population model:

ntþ1 ¼ Ant: ð1Þ

Here, nt is an n-dimensional vector with ith entry ni(t)

equal to the number of individuals in the ith stage at

time t. A is an n 3 n matrix with (i, j)-entry aij equal to

the transition rate from the jth stage to the ith stage.

Alternatively, the population vector at any time t can be

expressed as

nt ¼
Xn

i¼1

cik
t
iwi ð2Þ

where the ki’s are the eigenvalues of A (which we assume

to be distinct), the wi’s are corresponding right

eigenvectors, and the ci’s depend on initial conditions

and satisfy

n0 ¼
Xn

i¼1

ciwi

(Caswell 2001). The ith eigenvalue ki and corresponding

right wi and left vi eigenvectors of A satisfy

Awi ¼ kiwi ð3Þ

v�i A ¼ kiv�i : ð4Þ

Unless otherwise stated, we assume that A is primitive so

that, according to the Perron-Frobenius theorem

(Gantmacher 1959, Seneta 1981, Horn and Johnson

1985), there is a unique eigenvalue of A having modulus

strictly larger than the moduli of the other eigenvalues.

The indexing is chosen in such a way that k1 is this

‘‘dominant’’ eigenvalue. It is real and positive, and both

w1 and v1 have real positive entries. For large t, the i¼ 1

term dominates the expression for nt given in Eq. 2, and

so eventually, the population grows approximately

geometrically at the rate k1 (assuming c1 6¼ 0). The

dominant right w1 and left v1 eigenvectors describe the

asymptotic population structure and reproductive val-

ues, respectively (Goodman 1968). Unless otherwise

noted, we assume that the eigenvectors have been scaled

so that v�i wi ¼ 1, and v�i wj ¼ 0 for i 6¼ j. We further

assume that ||w1||¼ 1 and v1 is real, where the 1-norm of

any vector x is denoted by ||x|| ¼ Rn
i¼1 xi (xi is the ith

component of x).

Measurement of population inertia

Population inertia measures the long-term abundance

of a population with any historical structure (Fig. 1,

dashed or solid lines) relative to the expected abundance

of an otherwise equivalent population growing accord-

ing to its stable population structure (Fig. 1, dotted

lines). Population inertia is thus measured with a ratio,

and in demography, it has been called the stable

equivalent ratio (SER; sensu Tuljapurkar and Lee

1997). It is important to note that large magnitudes of

population inertia (i.e., SERs differing greatly from 1)

signify populations whose long-term abundance is

greatly affected by historical structure, not ones that

are resistant to the effects of historical population

structure.

In order to relate various notions of population

inertia and momentum that have appeared in the

literature, we first consider a general definition of inertia

Ir0
¼ lim

t!‘

jjntjj jjr0jj
jjrtjj jjn0jj

ð5Þ

which we call the ‘‘inertia I relative to r0.’’ Here r0 is a

nonzero vector and rt¼Atr0. We regard r0 as a point of

reference and therefore call it the ‘‘reference vector.’’ In

Appendix A, we establish the following: by assuming

that r0 ¼ cw1 for some positive real number c, Eq. 5

yields the SER mentioned above:

SER ¼ v�1 n0jjr0jj
v�1 r0jjn0jj

: ð6Þ

If we further assume that r0 is of the same size as n0 (i.e.,

||r0|| ¼ ||n0||), then the SER reduces to

SER ¼ v�1 n0

v�1 r0

ð7Þ

which is consistent with Eq. 7 in Tuljapurkar and Lee

(1997). Next, by replacing r0 in Eq. 6 with cw1 and
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canceling c’s we attain

SER ¼ v�1 n0jjw1jj
v�1 w1jjn0jj

¼ e>ðv�1 n0Þw1

e>n0

ð8Þ

where e is the vector with each entry equal to one. The

right-hand side of Eq. 8 is the same as Caswell’s discrete-

time formula for population momentum (Caswell

2001:104). Caswell considers momentum resulting from

instantaneous demographic changes to the stationary

level, that is, where k1¼ 1. In this case, rt¼ cw1¼ r0 for

all t so Eq. 5 gives

SERK ¼ lim
t!‘

jjntjj
jjn0jj

ðassuming k1 ¼ 1Þ ð9Þ

which is equivalent to Keyfitz’s (1971a) definition of

population momentum (hence the subscript K on SER).

This, in turn, is a special case of population inertia

(Schoen and Kim 1991, Tuljapurkar and Lee 1997,

Schoen and Jonsson 2003, Keyfitz and Caswell 2005).

Our derivation of Eq. 8 (see Appendix A) does not

require the assumption k1 ¼ 1, but the equivalent end

result is interesting. In the remainder of this paper we

focus on the SER and henceforth, we use the terms

‘‘population inertia’’ and SER interchangeably.

Sensitivity of population inertia to changes in vital rates

The projection matrix A may represent the single set

of focal vital rates, or, following a demographic

transition, A may represent the set of post-transition

vital rates. In both cases, one might be interested in the

question: ‘‘how would population inertia change if the

vital rates were just a little bit different?’’ To answer this

question a measure for the sensitivity of population

inertia to change in the underlying vital rates (aij) of the

transition matrix A is needed.

To develop general formulas for such a sensitivity

measure, we begin with Eq. 8 because this form of the

SER should be most familiar to readers (e.g.,

presented as an equation for the more familiar

population momentum in Caswell [2001] and Keyfitz

and Caswell [2005]). To begin, we apply the product

rule to differentiate Eq. 8 with respect to a single vital

rate aij:

]SER

]aij
¼ ]

]aij

e>½ðv�1 n0Þw1�
eTn0

� �

¼ 1

e>n0

e> ðv�1 n0Þ
]w1

]aij
þ ]v�1

]aij
n0

� �
w1

� �� �
: ð10Þ

It becomes apparent that perturbation of a vital rate

causes change in the right w1 and left v1 eigenvec-

tors; i.e., the vectors describing stable population

structure and reproductive value, respectively. Conve-

niently, Caswell (1980, 2001) presented formulas for

sensitivities of these eigenvectors to change in a vital

rate aij:

]w1

]aij
¼ w

ð1Þ
j

Xn

m 6¼1

v
ðmÞ
i

k1 � km
wm ð11Þ

]v1

]aij
¼ v

ð1Þ
i

Xn

m 6¼1

w
ðmÞ
j

k1 � km

vm: ð12Þ

where w
ðmÞ
j is the jth entry of wm and v

ðmÞ
i is the ith entry

of vm. Eqs. 11 and 12 are demographic applications of

well-known matrix theory (Wilkinson 1988), and when

incorporated into Eq. 10, the sensitivity of the SER to
change in a vital rate can be seen as

]SER

]aij
¼ 1

e>n0

3 e> ðv�1 n0Þ w
ð1Þ
j

Xn

m 6¼1

v
ðmÞ
i

k1 � km
wm

2
4

3
5

0
@

2
4

þ v
ð1Þ
i

Xn

m 6¼1

w
ðmÞ
j

k1 � km

vm

2
4

3
5
�

n0

8<
:

9=
;w1Þ�:

ð13Þ

Thus, change in a vital rate causes change in the stable

population vector w1 and reproductive value vector v1,

which then leads to change in the SER. Because it is not

mathematically intuitive that Eq. 13 holds true, as
asserted, we provide a detailed proof in Appendix B.

Sometimes matrix-level entries are computed from

multiple lower-level vital rates. For example, projection-

matrix fertilities are the product of fecundity and some

component of survival. Sensitivity of the SER to a
lower-level parameter x can be found using the chain

rule:

]SER

]x
¼
X

k;l

]SER

]akl

� �
]akl

]x

� �
: ð14Þ

SER sensitivities can also be calculated numerically:

]SER

]aij
¼: SERpost � SERpre

Dij
ð15Þ

where SERpre and SERpost are the measurements of

population inertia before and after the instantaneous

change Dij in the vital rate aij (the ‘‘¼: ’’ symbol means
‘‘approaches in the limit’’). Although we have chosen to

focus on sensitivity of the SER to absolute change in

vital rates, the elasticity of the SER to proportional

change in vital rates can easily be calculated from the

analytical sensitivity, or numerically,

]logSER

]logaij
¼ ]SER

]aij

� �
aij

SER

� 	
ð16Þ

]logSER

]logaij
¼: SERpost � SERpre

SERpre

� �
aij

Dij

� �
: ð17Þ
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In Appendix B we show that the SER elasticities

associated with the aij sum to zero (but not those

associated with lower-level vital rates).

Sensitivity of population inertia to changes

in population structure

Population inertia also depends on the initial popu-

lation vector n0, and one may be interested in how direct

changes in initial population structure cause change in

population inertia, noting that the ‘‘initial’’ point in time

can simply be defined as the point in time from which

the population will be studied forward. To develop

general formulas for this sensitivity we begin by

applying the quotient rule to differentiate Eq. 8 with

respect to a single entry ni(0) of the initial population

vector:

]SER

]nið0Þ
¼ e>w1

]

]nið0Þ
v�1 n0

e>n0

� �

¼ e>w1

e>n0½vð1Þi � � v�1 n0

ðe>n0Þ2

( )
: ð18Þ

We assume for the rest of this section that ||n0|| ¼ 1,

which allows simplification of Eq. 18:

]SER

]nið0Þ
¼ v

ð1Þ
i � v>1 n0: ð19Þ

In particular, if one examines the special case where n0¼
w1, then

]SER

]nið0Þ w1

¼ v
ð1Þ
i � 1:





 ð20Þ

Thus, to apply Eq. 19, knowledge of only the

reproductive value and initial population structure are

needed to measure the sensitivity of the SER to change

in a single entry of the initial population structure. If it is

safe to assume that the population structure is initially

stable (Eq. 20), then only reproductive value is needed,

which is easily computed from A.

Environmental and anthropogenic perturbations to

population structure will rarely affect just a single

(st)age class. Thus, to provide population inertia

sensitivities for more realistic applications, we now

consider the case where a perturbation affects multiple

(st)age classes simultaneously. To do this, let u¼ [u1, . . . ,

un]
> be an arbitrary unit vector (i.e., ||u|| ¼ 1) to be

regarded as a perturbation vector applied to n0.

Furthermore, denote by DuSER the directional deriva-

tive of SER in the direction u. Then,

DuSER ¼ rSER>u ð21Þ

where rSER ¼ []SER/]n1(0), . . . , ]SER/]nn(0)]
> is the

gradient of the SER. The set of all vectors x for which

rSER>x ¼ 0 forms a hyperplane in n-space. The set of

those x for which rSER>x . 0 (respectively, rSER>x
, 0) are on the positive side (respectively, negative side)

of the hyperplane. Thus, the directional derivative is

positive, negative, or zero when u is on the positive side

of the hyperplane, the negative side, or in the hyperplane

itself, respectively.

Considering the special case where n0¼ w1 (with each

being a unit vector), we get

DuSERjw1
¼ rSER>u

¼ ðv1 � eÞ>u: ð22Þ

In this case, the SER equals 1. Therefore, the new value

of population inertia after perturbation is .1, ,1, or¼1
when the directional derivative is .0, ,0, or ¼0,
respectively. If u ¼ w1, then the distribution of

individuals among stage classes does not change

following the perturbation (u), so the SER is expected

to remain at 1. This is indeed the case, since

Dw1
SERjw1

¼ ðv1 � eÞ>w1 ¼ v>1 w1 � e>w1

¼ v>1 w1 � 1 ¼ 0:

APPLICATIONS AND EXAMPLES

Age-related dynamics of inertia in a population

open to migration

Nearly all studies of population inertia in demogra-

phy have focused on momentum following change in

fertility to the stationary level. Yet, changes in age-

structured vital rates other than fertility are expected to

produce population inertia and warrant more study (Li

and Tuljapurkar 1999). In addition to fertility and

survival, dynamics of ‘‘open’’ populations are affected

by immigration and emigration, which can significantly

affect population inertia (Rogers and Willekens 1978,

Rogers 1995). Here, we provide an example using data

for a female segment of the U.S. population ,50 years

old (Rogers 1995) to illustrate how our formulae can be

used to examine the elasticity of population inertia to

changes in age-specific (or stage-specific) vital rates of an

open population. We assumed that the population

initially had a stable population structure and applied

Eqs. 13, 14, and 16 to calculate and compare the

elasticity of SER to changes in age-specific survival,

fecundity, immigration probability, and local popula-

tion fidelity (the complement of emigration probability).

Details of the population model and data are provided

in Appendix C. The Supplement contains Matlab scripts

for conducting this example.

Interestingly, the elasticity of SER to changes in age-

specific survival, fidelity (gx), and immigration changed

from negative to positive values with increasing age.

Meanwhile, elasticities for fecundity were always nega-

tive indicating that increased fecundity always created

inertia leading to smaller population size relative to an

otherwise equivalent population in its stable population

structure (Fig. 2). (We note that elasticity values indicate

results for an increase in a vital rate, and decreases
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would produce exactly the opposite result. We also note

that elasticities for survival probabilities and fidelity

were identical because of their perfect multiplicative

relation in the model; Appendix C.) The effect of

changing a vital rate on the stable population structure

and reproductive value (see Eq. 13) varied with age,

leading to the patterns in SER elasticities across age

(Fig. 2). Furthermore, changes in fecundity did not have

the largest impact on the SER, changes in survival and

local population fidelity did. Thus, while demographers

seem to be quite concerned about the effects of the

contemporary fertility transition on population momen-

tum (see numerous citations in Introduction), perhaps

they should also be concerned about the effects of

increasing longevity (sensu Guillot 2005) and changes in

migration rates on population inertia. Moreover,

population inertia could also have profound impacts

on the economy (Lee 2000) and use of natural resources

(Liu et al. 1999, 2003) because of its effects on the

abundance of specific age groups, e.g., age groups in the

working force or elderly dependents. Hence, age-specific

patterns in SER elasticities (see Fig. 2) could be very

important in these areas of study as well.

Our formulae can also be applied to models that

explicitly treat spatial population structure (e.g., multi-

regional populations; Rogers 1995). In Appendix D we

provide an example illustrating how population inertia

sensitivities can be used to design creative management

strategies for a source–sink metapopulation (Pulliam

1988, Hanski and Gilpin 1997).

Effects of perturbing population structure in management

and conservation

In many cases, managers and pest-control officials

might want to consider how different management

strategies focused on population structure could change

population inertia in ways to achieve abundance-related

management goals in a more timely and efficient manner

(MacArthur 1960, Merrill et al. 2003, Koons et al.

2006b). Plant and animal stocking programs (e.g.,

captive release or relocation of wild individuals) provide

managers a variety of ways to directly add individuals to

specific age or stage classes of a population (e.g.,

Starling 1991, Wolf et al. 1996, Ostermann et al.

2001), while harvest, live-trapping, and other removal

techniques allow managers to directly decrease abun-

dance in certain stage classes (Larkin 1977, Holt and

Talbot 1978). All of these management practices will

affect population structure. If goals are very short-term

and management is implemented frequently (e.g., every

year), then transient sensitivities of population abun-

dance, growth rate, reactivity, and other dynamics (see

Caswell 2007) will be very useful in guiding short-term

management decisions. If management is not applied as

frequently, then the effects of the abovementioned

management practices on population inertia could help

managers make better decisions to achieve their goals

(see also Appendix D).

For such cases, we provide a hypothetical example

that illustrates how population inertia is affected by

direct management perturbations to population struc-

ture. The following matrix A describes fertility and

survival probabilities of striped bass (Morone saxatilis)

(Cohen et al. 1983):

A ¼
0 0 0 5:25 3 104

1:24 3 10�5 0 0 0

0 0:6 0 0

0 0 0:6 0:6

2
664

3
775:

A is constructed in the traditional post-breeding census

format (Caswell 2001), adult fertility is in the upper right

corner of the matrix, and survival probabilities are on

the sub-diagonal and bottom-right corner. The first age

class represents small offspring (small fry), the second

and third represent subadults, and the fourth represents

all adults.

In the long run, a population of striped bass

experiencing the vital rates in A would decrease by 9%

each year (k1¼0.91). This occurs in commercial or sport

fisheries when harvest (or other factors) reduces survival

chances to levels that cannot be compensated by

reproductive output. To alleviate the continual depreci-

ation of a fishery, managers often use stocking programs

to replenish populations of striped bass (Sutton et al.

2000) and other species. Here, we see if population

inertia sensitivities to direct changes in population

structure (i.e., the very action of stocking) can motivate

ways to improve the efficiency of stocking efforts to

increase abundance, and potentially reduce the frequen-

cy of stocking required to maintain the fishery.

To begin, we calculated the dominant left v1 ¼ [0.17,

1.25 3 104, 1.88 3 104, 2.85 3 104]> and right w1 ¼
[0.9996, 1.36 3 10�5, 8.97 3 10�6, 1.73 3 10�5]>

eigenvectors of A. We assumed that population struc-

ture was initially stable (i.e., n0 } w1), indicating SER

FIG. 2. Elasticity of the stable equivalent ratio (SER) to
changes in survival probability, local population fidelity,
immigration probability, and fecundity across age categories
for the U.S. Southwest population example (see Applications
and Examples). Note that the elasticity values for survival and
fidelity are exactly the same.
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initially¼ 1. Then, we used the directional derivative in

Eq. 22 to calculate the sensitivity of SER to perturba-

tions in population structure. The units of increase (or

decrease) refer to individuals.

If only the ith entry of initial population structure is

perturbed, then the direction SER moves away from 1 is

dictated by the sign of the ith entry of rSER: v
ð1Þ
i � 1.

For example, a unit increase in the first stage class

decreases population inertia (DuSERjw1
¼�0.83). A unit

increase in subadult stages increase population inertia

substantially (unit decreases would produce exactly the

opposite results), and the maximal effect on population

inertia results from a unit increase in the adult stage

(DuSERjw1
¼ 2.85 3 104). Unit perturbations that are

spread across stages have intermediate effects on

population inertia (see Table 1). Although perturbations

equal to the stable population structure (w1) might

increase absolute abundance, they have no effect on

population inertia (DuSERjw1
¼ 0, SER still equals 1

following perturbation).

These results might be very useful in designing better

stocking programs. For illustration, consider a scenario

where stocking occurs once the population drops to a

unit of individuals, at which time the manager stocks an

additional unit to the population. Release of small fry is

a common stocking practice for striped bass (Sutton et

al. 2000) and many other species; however, releasing a

unit of small fry will disrupt population structure in a

way that decreases population inertia and would result

in long-term abundance that is just 17% of that for a

release that is made proportional to w1. As a result,

stocking would have to be done 5.6 times more

frequently than a stocking program done in proportion

to w1 (Fig. 3a), which for striped bass, would constitute

releasing just a small number of subadults and adults

relative to the number of small fry released (Table 1).

Releasing a unit of adults on the other hand would

produce maximal population inertia, a long-term

TABLE 1. The sensitivity of population inertia to unit changes
u in the initial population structure of the example
population of striped bass, indicated by the directional
derivative DuSERjw1

.

u� DuSERjw1

[1, 0, 0, 0]> �0.83
[0, 1, 0, 0]> 1.24 3 104

[0, 0, 1, 0]> 1.88 3 104

[0, 0, 0, 1]> 2.85 3 104

[0.25, 0.25, 0.25, 0.25 ]> 1.49 3 104

[0.75, 0.25, 0, 0]> 3.09 3 103

[0.99, 0, 0, 0.01]> 284.20
[0.99996, 1.36 3 10�5, 8.97 3 10�6,
1.73 3 10�6]>�

0

Note: We used the dominant left eigenvector v1¼ [0.17, 1.24
3 104, 1.883 104, 2.853 104]> and the following gradient of the
SER (stable equivalent ratio): rSER¼ [�0.83, 1.24 3 104, 1.88
3 104, 2.85 3 104]>, each rounded to the second decimal.

� Unit decreases produce exactly the opposite result.
� The stable population structure rounded to the second

decimal.

FIG. 3. Transient dynamics and population inertia resulting
from stocking one unit of individuals (10, 1000, and so on;
results are not affected by the chosen number) for populations
of striped bass that were in a stable population structure w1 and
had dropped to a single unit (thus, projections begin with a
total of two units). Projections are for (a) stocking a unit of fry
(solid line) relative to stocking made in proportion to w1

(always the dashed line); (b) stocking a unit of adults (solid line)
relative to stocking made in proportion to w1; (c) stocking one
adult for every 99 fry (solid line) relative to stocking made in
proportion to w1. Note differences in the time elapsed until the
population drops to a single unit (dotted line), at which time
managers would have to release another unit of individuals.
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abundance that is 2.85 3 104 times greater than that for

a program where release is conducted in proportion to

w1, and duration between stocking would be increased

14 times (presumably a very good thing; Fig. 3b). If this

management practice were too expensive, release of just

one adult for every 99 fry would still lead to a

substantial increase in population inertia (Table 1),

and duration between stocking would be increased 8.18

times relative to a release proportional to w1 (Fig. 3c)

and 45.8 times relative to a pure release of small fry.

Apart from the effects of perturbation to structure on

population inertia, each scenario also resulted in a very

large transient reaction to the perturbation (see Figs. 1

and 3), which might be of more interest to a manager if

goals are very short-term (see Caswell 2007 for transient

sensitivities). The Supplement contains a Matlab script

for conducting this example, and includes code for

randomly selecting a perturbation vector from a simplex

that might be useful for examining situations where

perturbations cannot be perfectly controlled (e.g.,

harvest).

In general, the influence of population structure on

eventual population size is of great importance in

conservation biology and management (Keyfitz and

Caswell 2005). When stocking or reintroducing species

into previously habited areas, it would be most effective

to introduce individuals of an age and reproductive

value that would maximize the SER, or at least improve

upon an existing management program. Similarly,

invasion of nonnative plants and animals can lead to

substantial economic and environmental damage. Man-

agement aimed at minimizing the SER would be of

interest in the control of invasive species (Keyfitz and

Caswell 2005, Koons et al. 2006b) and our formulae

could help refine management agendas in both situa-

tions. The particular effect of a perturbation on the

transient dynamics and inertia of a population will

depend on the organism’s life history and the way in

which structure is perturbed away from the stable

population structure (Koons et al. 2005, 2006a);

financial costs will limit what managers can actually

do. In Appendix E, we provide another example

describing the sensitivity of population inertia across

life history strategies.

DISCUSSION

Population inertia is a measure more closely related to

population size than growth rate, and unlike growth

rate, population size is very responsive to initial

population structure (Tuljapurkar and Lee 1997). Direct

or indirect (via vital rates) changes in population

structure create transient dynamics having an effect on

both short- and long-term size, which is an issue that is

best addressed with formal perturbation measures like

sensitivities. Analytical sensitivities have been developed

for population size (Fox and Gurevitch 2000, Yearsley

2004, Caswell 2007). However, we have drawn upon

matrix theory (Wilkinson 1988) to derive a suite of

sensitivity formulae for the SER. These formulae differ

from those for population size itself because the SER is a

ratio measuring the inertial effects of population

structure and transient dynamics on long-term popula-

tion size relative to an otherwise equivalent population

in its asymptotically stable population structure.

Most often, demographers and population biologists

focus on asymptotic measures of population dynamics

(e.g., r, k1) making the SER especially useful because it

provides a direct comparison of the actual dynamics

resulting from changes in the vital rates and population

structure to the asymptotic population dynamics (Fig.

1). Thus, SER sensitivities can readily be used to

examine the consequences of assuming a stable popula-

tion structure, which is common practice. Furthermore,

we have shown that SER sensitivities could be used to

address a large array of new questions in human

demography, conservation, natural resource manage-

ment, and comparative life history analysis.

For example, human demographers usually study

population inertia resulting from changes in fertility (see

Introduction). By using our formulas and considering all

vital rates constituting a population open to migration,

we found changes to age-specific survival and emigra-

tion probabilities to have a greater proportionate effect

on population inertia than changes in fertility. In the

context of human populations, such results could be

important in the development of socio-demographic

policies (Guillot 2005). In the context of wild organisms,

population inertia affects the long-term population

trajectory, and could thus shorten or lengthen the time

it takes for a population to go extinct, recover from

depletion, or grow to levels that become a nuisance

(Koons et al. 2006b). Conservationists often focus

directly on improving asymptotic growth rate in sink

populations (i.e., populations where k1 , 1). In cases

where this is not economically feasible, we have shown

that SER sensitivities can motivate alternatives for the

management of spatially structured source–sink popu-

lations. Infrequent management of corridors to improve

dispersal from a (potentially density-regulated) source to

a sink can have interesting effects on population inertia

that can increase long-term abundance in a sink and the

overall metapopulation; even without affecting asymp-

totic growth rates (Appendix D). In a variety of spatial

situations, SER sensitivities could therefore be useful for

examining the effects of change in birth, immigration,

death, and emigration rates on population inertia and

long-term abundance.

In another example, we discovered that SER sensi-

tivities follow a general life history pattern related to

generation length (Appendix E). Populations of long-

lived species are more likely to experience large

magnitudes of population inertia following a vital-rate

perturbation than short-lived species, which could be

extremely useful when designing general policies and

management schemes to safeguard declining popula-

tions from going extinct and when trying to manage or
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‘‘control’’ the abundance of populations experiencing

surplus rates of growth (i.e., k1 . 1; e.g., Merrill et al.

2003, Hauser et al. 2006, Koons et al. 2006a, b).

Depending on the conservation or management

situation, direct addition to, or removal from, the

population may be more relevant than perturbation of

vital rates (e.g., stocking and relocation programs). In

our example of striped bass stocking, we made use of the

gradient vector and directional derivative to show that

the net inertial effect of perturbing population structure

depends on (1) the stage classes that are targeted and (2)

whether the perturbation increases or decreases the

relative abundance in a given stage. Depending on which

stage(s) are stocked (or removed), population abun-

dance can experience enormous transient increase (or

decrease) following direct perturbations to population

structure (Fig. 3). In the case of harvest management,

management is applied frequently (e.g., every year) and

this transient ‘‘reaction’’ to a perturbation (Caswell and

Neubert 2005) might be of more interest than the longer-

term effects of population inertia. While it may be

possible to control population abundance ‘‘or’’ inertia of

a structured population with an optimal harvest

strategy, it is not feasible to simultaneously control

both because of the fluctuating nature of transient

dynamics (sensu Hauser et al. 2006). Thus, examination

of transient reactions to perturbations might be of more

use in harvest management (Caswell 2007). On the other

hand, stocking, relocation, and reintroduction programs

might involve less frequent application of management

(sometimes once). In these cases, the inertial effects of

direct perturbation to population structure on long-term

abundance will be of great interest because it can aid the

design of more efficient management practices in terms

of both population dynamics and finances (see example

above). In any event, perturbations to population

structure have important effects on transient dynamics

(Koons et al. 2005, Mertens et al. 2006) and long-term

abundance, which are both of management and

conservation concern.

Formulas relating change in demographic parameters

to change in the asymptotic population growth rate

(e.g., Caswell 1978), transient dynamics (Fox and

Gurevitch 2000, Yearsley 2004, Koons et al. 2005,

Mertens et al. 2006, Caswell 2007), and inertia in long-

term population size (here) are all needed to better

understand population dynamics from evolutionary and

applied points of view. Our work provides a way to

more deeply study the latter, and provides a template for

generalizing our formulae to situations where popula-

tions might be affected by environmental variability (see

Tuljapurkar and Lee 1997) as well as their own density.

Our formulae can be used to approximate the sensitivity

of population inertia to changes in vital rates and

population structure for density-regulated populations

that are either at low density or near an equilibrium (see

Appendix D). Nevertheless, we encourage generaliza-

tions of our results and think that Caswell’s (2007)

introduction of matrix calculus into demography and

ecology will be very useful for expanding our formulae

to all density-regulated populations and those inhabiting

changing environments. The latter of which could also

be a way to examine the effects of frequent management

(e.g., harvest) or gradual policy change on population

inertia.
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APPENDIX A

Derivation of relationships among measures of population inertia and momentum that have appeared in the scientific literature
(Ecological Archives E088-177-A1).

APPENDIX B

Proof of Eq. 13 and that the SER elasticities associated with the matrix entries sum to zero (Ecological Archives E088-177-A2).

APPENDIX C

Technical details of the example depicting age-related dynamics of inertia in a human population open to migration (Ecological
Archives E088-177-A3).

APPENDIX D

An example illustrating population inertia sensitivities in a source–sink metapopulation (Ecological Archives E088-177-A4).

APPENDIX E

An example illustrating population inertia sensitivities across life history strategies (Ecological Archives E088-177-A5).

SUPPLEMENT

Matlab files for conducting applications and examples (Ecological Archives E088-177-S1).
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