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a b s t r a c t

It has long been recognized that demographic structure within a population can significantly

affect the likely outcomes of harvest. Many studies have focussed on equilibrium dynamics

and maximization of the value of the harvest taken. However, in some cases the manage-

ment objective is to maintain the population at a abundance that is significantly below the
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carrying capacity. Achieving such an objective by harvest can be complicated by the pres-

ence of significant structure (age or stage) in the target population. In such cases, optimal

harvest strategies must account for differences among age- or stage-classes of individuals

in their relative contribution to the demography of the population. In addition, structured

populations are also characterized by transient non-linear dynamics following perturba-

tion, such that even under an equilibrium harvest, the population may exhibit significant

momentum, increasing or decreasing before cessation of growth. Using simple linear time-

invariant models, we show that if harvest levels are set dynamically (e.g., annually) then

transient effects can be as or more important than equilibrium outcomes. We show that ap-

propriate harvest rates can be complicated by uncertainty about the demographic structure

of the population, or limited control over the structure of the harvest taken.

© 2006 Elsevier B.V. All rights reserved.

1. Introduction

Age- or stage-structure has long been included in the mod-
elling of harvested populations, particularly fish and forests
(Getz and Haight, 1989). Early models were linear and deter-
ministic (Beddington and Taylor, 1973; Doubleday, 1975; Rorres
and Fair, 1975), progressing later to models that included den-
sity dependence (Reed, 1980; Getz, 1980; Jensen, 1996, 2000),
seasonal effects (Getz, 1980), environmental effects on vital
rates (Milner-Gulland, 1994; Pascual et al., 1997; Xie et al., 1999),
and spatial structure (Brooks and Lebreton, 2001). Optimiza-
tion of harvest is usually carried out with the purpose of max-
imizing sustainable yield, and so equilibrium dynamics are a
common focus.

∗ Corresponding author. Tel.: +61 7 33461431.
E-mail address: c.hauser@uq.edu.au (C.E. Hauser).

As more complicated models have been developed, it has
become common to simulate and observe dynamics under
different scenarios as an alternative to formal optimization.
Other characteristics of harvest strategies have been consid-
ered, such as variance in yield (Milner-Gulland, 1994; Sæther
et al., 2001), harvest structure (Ginsberg and Milner-Gulland,
1994; Jensen, 1996), population structure (Milner-Gulland,
1994; Jensen, 1996, 2000; Xie et al., 1999), abundance (Ginsberg
and Milner-Gulland, 1994; Milner-Gulland, 1994; Pascual et al.,
1997; Xie et al., 1999; Sæther et al., 2001; Mayaka et al., 2004),
and transient dynamics (Jensen, 1996).

Only a small number of studies have attempted to optimize
harvest when the initial demographic structure of the popu-
lation is markedly different from the equilibrium structure. In
such cases, transient dynamics are of particular importance
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(Fox and Gurevitch, 2000). When sequential harvest decisions
are made over time, transient dynamics may have a large influ-
ence on observed population change between decisions, and
so must be accounted for during the decision-making pro-
cess. Harley and Manson (1981) were the first to discuss how
a structured population might be most efficiently brought to
equilibrium in a finite number of steps. A small number of
other studies (Stocker, 1983; Milner-Gulland, 1997; Hauser et
al., 2005) have used stochastic dynamic programming to de-
termine the optimal harvest decision for any possible initial
population structure and abundance. However, these studies
have divided the target population into only a small number
of classes, and have generally assumed complete knowledge
of the structure of the population at the time of the harvest.
While modelling a small number of classes may have been ad-
equate for these studies, incorporating more classes is likely to
be limited by data constraints and the computational method.

Even in the absence of dynamic decision-making, popula-
tion momentum can be used as a measure of the long-term
effect of transient dynamics. It was first noted by Keyfitz (1971),
but has only recently been discussed in the context of popula-
tion management (Caswell, 2001; Koons et al., 2005a,b). While
a management action such as harvest can reset the asymp-
totic growth rate of a population to replacement only, tran-
sient dynamics may cause the population to grow or decline
before it reaches equilibrium.

In this paper, we will explore the harvest of a structured
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Aw = �w. (2)

Note that for a given �, the vectors v and w are uniquely de-
fined only to a multiplicative constant. That is, for any solution
v, a scalar multiple cv of the vector is also a solution and like-
wise for w.

The stable stage distribution w indicates the relative pro-
portion of each stage-class in the population over the long
term. The reproductive value of each stage-class (Fisher, 1958)
indicates the relative contribution of that age-class to future
population growth. It is customary to set v1 = 1 so that the re-
productive value of an individual in an advanced stage is mea-
sured relative to an individual in the first stage. Reproductive
value has previously been shown to influence the optimal har-
vest of populations with demographic structure (MacArthur,
1960; Brooks and Lebreton, 2001).

We will introduce harvest to our structured matrix model in
two ways: constant and proportional harvest. Under constant
harvest, we remove a number of individuals from one or more
stage-classes at each time t:

Nt+1 = ANt − Yt, (3)

where the vector Yt gives the number of individuals removed
from each stage-class.

Under proportional harvest, we remove a proportion of the
individuals from stage-classes at each time t:
opulation with the purpose of control. Structured models
ave rarely been used to optimize harvest for control (but see
rooks and Lebreton, 2001). We assume that the desired level
f control maintains the population at a steady abundance
ell below carrying capacity, so that a linear (density indepen-
ent) matrix model is appropriate. This model has been con-
idered frequently in the past (Beddington and Taylor, 1973;
oubleday, 1975; Rorres and Fair, 1975) but usually with the
urpose of maximizing yield under equilibrium conditions.

nstead we will consider the structure of the harvest taken,
he structure and abundance of the population, and the pos-
ible effects of population momentum. We discuss our results
n the context of uncertainty, outlining potential challenges in

eeting the control objective (sensu Hunter and Runge, 2004).

. The model

or the unharvested population, we use the matrix model

t+1 = ANt,

here Nt is a vector giving the number of individuals in each
tage at time t and A is the population projection matrix
Caswell, 2001). We will assume that A is primitive (aperiodic),
o that it has a real positive eigenvalue � which is greater in
agnitude than all other eigenvalues. This eigenvalue gives

he asymptotic growth rate and we will assume that the pop-
lation is growing so that � > 1.

The associated left and right eigenvalues v and w are
trictly positive and give the stage-specific reproductive val-
es and the stable stage distribution, respectively, such that

′A = �v′. (1)
Nt+1 = (I − Ht)ANt, (4)

where I is the identity matrix of appropriate dimension, and
Ht = diag(h1,t, h2,t, . . .) gives the proportion hi,t of individuals
removed from stage i at time t.

3. Equilibrium condition: constant harvest

When the population is in equilibrium, it is neither growing
nor declining. When our objective is to maintain the popula-
tion at a particular abundance, the equilibrium condition in-
dicates what this abundance can be. We find the equilibrium
condition for the model with constant harvest by removing
the time dependence in Eq. (3):

Neq = ANeq − Yeq. (5)

Rearrangement of this equation gives the steady stage-
structured population state

Neq = (A − I)−1Yeq. (6)

Since � �= 1 then the inverse (A − I)−1 exists, but we must also
ensure that all elements of Neq are nonnegative.

Now we examine the approach to this equilibrium when
the same stage-specific harvest is removed at each time step.
Subtracting (5) from (3) gives

Nt − Neq = A(Nt−1 − Neq),

and we can substitute this expression repeatedly into itself to
see that

Nt − Neq = Ak(Nt−k − Neq) for k = 1, 2, . . . , t.
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Specifically when k = t,

Nt − Neq = At(N0 − Neq).

Since A is primitive, then we can approximate At by �twv′

for large t (Seneta, 1980, p. 9). To do so we must choose eigen-
vectors v and w so that v′w = 1. Thus in the long-term

Nt − Neq ≈ [v′(N0 − Neq)]�tw.

Since �t grows unbounded, then the population will approach
a steady state over time only if

v′(N0 − Neq) = 0 or v′N0 = v′Neq. (7)

That is, the total reproductive value of the equilibrium pop-
ulation must be equal to the total reproductive value of the
initial population. Note that the reproductive value vi of an
individual in stage i is fixed, but the total reproductive value
of the population depends on the size and structure of the
population.

The left eigenvector of A satisfies (1), from which we can
see that

1
� − 1

v′(A − I) = v′. (8)

Combining Eqs. (6)–(8) gives

Fig. 1 – Life-cycle diagram of the 3-stage example
population. Nodes represent 1-year-olds, 2-year-olds and
adults (of at least 3 years of age); arrows pointing
left-to-right give stage-specific survival rates; arrow
pointing right-to-left gives stage-specific fertility.

Example. We will consider a simple model of a growing pop-
ulation with three stage-classes. Individuals are classified as
1-year-olds, 2-year-olds or adults (who are 3 or more years of
age). Fig. 1 shows the life-cycle diagram for this population
based on pre-breeding census (Caswell, 2001). The projection
matrix A can be constructed directly from the life-cycle dia-
gram:

A =

⎡
⎢⎣

0 0 1.04

0.86 0 0

0 0.86 0.86

⎤
⎥⎦ . (12)

Given A, we can calculate the dominant eigenvalue and
corresponding eigenvectors:

� = 1.309, v = [1 1.522 2.317]′, w = [0.203 0.134 0.256]′.

Note that the eigenvectors are not unique and that any scalar
multiple of v and w above also satisfy the eigenvector Eqs. (1)
and (2). We selected the combination above so that v1 = 1 and
v′w = 1.

The dominant eigenvalue indicates that in the long term,
the unharvested population will grow by 31% each time step.
Normalizing w shows that the projected population will even-
tually be composed of 34.3% 1-year-olds, 22.5% 2-year-olds and
43.2% adults. Reproductive value increases with age, so the re-
moval of an adult by harvest could potentially have a greater
v′N0 = v′Neq= 1
� − 1

v′(A − I)Neq= 1
� − 1

v′(A − I)(A − I)−1Yeq

= 1
� − 1

v′Yeq

v′Yeq = v′[N0(� − 1)]. (9)

Now � − 1 is the asymptotic proportional increase in unhar-
vested population size in one time step, e.g. if � = 1.1 then the
population will increase by 10% per time step in the long-term.
The total reproductive value of these “surplus” individuals in
the initial population N0 must be equal to the total reproduc-
tive value of the individuals to be harvested. This ensures that
under a repeated harvest of Yeq each time step, the population
will approach steady state Neq.

It is worth noting that if we were to ignore stage-structure
in the population and model only the total population abun-
dance over time then

Nt+1 = �Nt − Yt (10)

approximates the structured model well when the stage-
structure of the population is proportional to w. For this scalar
model, the equilibrium condition is

Yeq = (� − 1)Neq. (11)

Again the relationship is depends on the proportional surplus
� − 1 but in the absence of structure, reproductive value is
meaningless. There is only one harvest rate at which the pop-
ulation can be maintained in equilibrium. When population
structure is apparent, then different combinations of stage-
classes can be removed that all achieve equilibrium in the long
term. These combinations are determined by the reproductive
value of each stage-class, and the initial population structure
and abundance N0.
impact on population growth than the removal of a 1-year-
old by harvest (we note that the current value of an individual
from a particular age-class is partially a function of whether
or not the population is growing; Mertz, 1971) .

Assume first that the initial population is composed of 1000
individuals under the stable stage distribution of the unhar-
vested population, i.e. N0 = [343 225 432]′. Then the equi-
librium condition (9) becomes

[1 1.522 2.317]

⎡
⎢⎣

Y
eq
1

Y
eq
2

Y
eq
3

⎤
⎥⎦=[1 1.522 2.317]

⎡
⎢⎣

343

225

432

⎤
⎥⎦ (1.309 − 1)

Y
eq
1 + 1.522Y

eq
2 + 2.317Y

eq
3 = 520.863, (13)

where Y
eq
i

is the number of individuals in stage i harvested
during each time step. That is, a particular linear combina-
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tion of the harvest taken from each stage-class must be held
at a constant. The constant (520.863) is a function of ini-
tial population size, and the harvest taken from each age-
class is weighted by the reproductive value of individuals in
that age-class. For biological realism we constrain Y

eq
i

≥ 0 for
all stage-classes i. We must also ensure that N

eq
i

≥ 0 for all
stage-classes. In this example all elements of (A − I)−1 are
non-negative, so Eq. (6) indicates that N

eq
i

≥ 0 holds whenever
Y

eq
i

≥ 0.
We plot the values of Y

eq
1 , Y

eq
2 and Y

eq
3 that satisfy Eq. (13) in

Fig. 2(i). They form a plane in three-dimensional space. A re-
peated structured harvest that falls above the plane will cause
the population to decline over time, while a structured harvest
that falls below the plane will allow the population to continue
growing (at a rate slower than �) over time. A structured har-
vest that falls on the plane, when taken repeatedly from the
initial population N0 = [343 225 432]′, will cause the popu-
lation to stabilize with some stage-structure and abundance,
specified in Eq. (6).

For example if we take an equilibrium harvest and only 1-
year-olds are removed from the population, then we choose

Yeq = [521 0 0]′, so that Neq = [116 100 612]′.

Instead we might target 2-year-olds for harvest, but expect
that we will incidentally remove 10% as many 1-year-olds
a
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Fig. 2 – Stage-specific harvest combinations that satisfy the
equilibrium condition for the example: (i) for constant
harvest with N0 = [343 225 432]′ (see Eq. (13)), (ii) for
constant harvest with N0 = [500 300 200]′ (see Eq. (14))
and (iii) for proportional harvest with any initial conditions
(see Eq. (17)).
nd 10% as many adults as we do 2-year-olds. We substitute
Y

eq
1 , Y

eq
2 , Y

eq
3 ) = (y, 10y, y) into Eq. (13) and solve to find that

= 28.0989 and so

eq = [28 281 28]′, and Neq = [452 108 462]′.

ote that the harvest taken when removing only 1-year-olds
s much larger than that of removing mostly 2-year-olds (with
bout 8% each of 1-year-old and adults in the harvest). The
quilibrium population size is different under each approach
828 and 1022, respectively), and so is the stage-structure.

In Fig. 3(i) we plot population trajectories for the initial pop-
lation N0 = [343 225 432]′, repeatedly subjected to differ-
nt harvests that satisfy the equilibrium condition (13). The
opulation does reach an equilibrium size over time in cases

c)–(e). However in cases (a) and (b) the population does not
each an equilibrium abundance and instead increases un-
ounded, even though the harvests taken in these cases sat-

sfy condition (13). This is because in some time steps the
umber of individuals to be removed from some stage-class i
t time t is larger than the number of individuals existing in
hat stage-class at that time. In our constant harvest model as
iven in Eq. (3), this causes the number of individuals in that
lass Ni,t+1 to be negative. Since this is not biologically feasible,
e have assumed that Ni,t+1 = 0 and that the full harvest Yi,t

s not taken. As a consequence, the large reproductive value
resent in another stage-class is not counter-acted by negative

ndividuals in stage i and so the population grows unbounded.
herefore, we require extra constraints to obtain biologically

easible equilibrium harvest. If we instead use proportional
arvest (as in the next section), then this issue will not arise.

Now, let us consider a different initial population. We keep
he same abundance of 1000, but change the structure by set-
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Fig. 3 – Total population size over time under a number of
repeated harvest strategies. In plot (i) the initial population
is N0 = [343 225 432]′ with constant harvest levels:
(a) Y = [0 342 0]′, (b) Y = [521 0 0]′, (c) Y = [0 0 225]′,
(d) Y = [28 281 28]′, (e) Y = [106 70 133]′. In plot (ii) the
initial population is N0 = [343 225 432]′ with
proportional harvest levels: (a) (h1, h2, h3) = (0, 0.8180, 0),
(b) (h1, h2, h3) = (0.0699, 0.6992, 0.0699), (c) (h1, h2, h3) =
(0, 0, 0.3862), (d) (h1, h2, h3) = (0.2360, 0.2360, 0.2360),
(e) (h1, h2, h3) = (0.8180, 0, 0). In plot (iii) the initial
population is N0 = [500 300 200]′ with proportional
harvest levels: (a) (h1, h2, h3) = (0, 0.8180, 0), (b)
(h1, h2, h3) = (0, 0, 0.3862), (c) (h1, h2, h3) = (0.8180, 0, 0), (d)
(h1, h2, h3) = (0.0699, 0.6992, 0.0699), (e) (h1, h2, h3) =
(0.2360, 0.2360, 0.2360).

ting N0 = [500 300 200]′. Then the equilibrium condition be-
comes

Y
eq
1 + 1.522Y

eq
2 + 2.317Y

eq
3 = 438.672. (14)

Again the harvest taken from each stage-class must satisfy
a linear constraint, but the constant (438.672) is smaller than
for the previous initial population. This is because the total
reproductive value of the initial population is smaller, and
so fewer individuals need to be harvested to reach equilib-
rium. If we plot the combinations of Y

eq
1 , Y

eq
2 and Y

eq
3 that

satisfy this equilibrium condition (14), we see that they form
a plane that is parallel to the plane created by condition
(13) for N0 = [343 225 432]′ (Fig. 2(ii)). The smaller constant
438.672 means that the intercepts with the axes are also
smaller.

4. Equilibrium condition: proportional
harvest

We obtain the equilibrium condition under proportional har-
vest by removing the time dependence in Eq. (4):

Neq = (I − Heq)ANeq. (15)

Note that this is an eigenvalue equation in the form of (2). We
wish to find harvest Heq such that (I − Heq)A has a dominant
eigenvalue of 1. That is, we set the long-term growth rate of

the population to 1, replacement only. Then the steady popula-
tion structure is given by the corresponding right eigenvector
Neq.

If the initial population is given by vector N0, then we can
find the equilibrium population size after repeated propor-
tional harvests Heq by using the result from Seneta (1980, p.
9):

Neq = (v′
HN0)wH, (16)

where vH, wH are the left and right eigenvectors of (I − Heq)A
corresponding to eigenvalue 1, normalized so that v′

HwH = 1.

Example. Again, we consider the example age-structured pop-
ulation depicted in Fig. 1. We need to find Heq such that the
dominant eigenvalue of (I − Heq)A is 1. Then Heq is the solution
to

|(I − Heq)A − I| = 0.

Substituting the matrix A from the previous example gives

∣∣∣∣∣∣∣

−1 0 (1 − h
eq
1 )1.04

(1 − h
eq
2 )0.86 −1 0

0 (1 − h
eq
3 )0.86 (1 − h

eq
3 )0.86 − 1

∣∣∣∣∣∣∣
= 0,

which can be simplified to

h
eq
3 = 1 − 1

0.86 + 1.04 × 0.862(1 − h
eq
1 )(1 − h

eq
2 )

. (17)

The combinations of h
eq
1 , h

eq
2 , h

eq
3 that satisfy this equilibrium

condition form a curved surface in three-dimensional space,
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shown in Fig. 2(iii). Note that the equilibrium condition is not
dependent on the initial population N0.

If we take an equilibrium proportional harvest and only 1-
year-olds are removed from the population, then we choose
(heq

1 , h
eq
2 , h

eq
3 ) = (0.8180, 0, 0). That is, 82% of 1-year-olds must

be removed each year to bring the population to equilibrium.
Substituting this harvest strategy into (15) gives

Neq =

⎡
⎢⎣

0 0 0.1893

0.86 0 0

0 0.86 0.86

⎤
⎥⎦Neq.

We find that the left and right eigenvectors of this matrix (I −
Heq)A are

vH = [1 1.1628 1.3521]′ and

wH = [0.1094 0.0941 0.5778]′,

where we chose this specific eigenvector pair so that v1 = 1
and v′

HwH = 1.
Now the equilibrium population size and structure de-

pends on the initial population. If the initial population is
N0 = [343 225 432]′ then from (16)

Neq = [130 112 687]′,

a
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population size. Momentum arises when the initial population
structure is different from the long-term or equilibrium pop-
ulation structure. The “unbalanced” number of individuals in
the reproductive stages mean that the short-term growth rate
will be higher or lower than the long-term growth rate of 1,
leading to population growth or decline before equilibrium is
reached.

Population momentum M does not completely describe
how the population is likely to respond in the short-term. In
Fig. 3(i), we see that in case (c) (where 225 adults are har-
vested each time step) and case (d) (where 28 1-year-olds,
281 2-year-olds and 28 adults are harvested), the population
reaches an equilibrium population that is larger in abundance
than the initial population of 1000 individuals. However dur-
ing the first time step, the population increases in case (c) and
declines in case (d). In case (b), the population initially declines
even more dramatically, only to grow unbounded in later time
steps.

In case (d), the population eventually reaches steady state
Neq = [452 109 462]′. The initial population has proportion-
ally fewer adults than this equilibrium structure, and so in the
first year the population decreases slightly due to a deficiency
in reproduction. During the second year, the high proportion
of 2-year-olds in the initial population have become adults,
creating surplus reproduction and population increase. This
year-to-year restructuring of the population creates a long-
term population abundance that is larger than the initial 1000
nd if the initial population is N0 = [500 300 200]′ then

eq = [122 105 647]′.

ig. 3(ii and iii) show the approach to equilibrium for the above
xamples, and a number of other equilibrium proportional
arvest strategies. When the initial population has the equilib-
ium structure of the unharvested population, then the even-
ual total population size may be larger or smaller than initial
opulation size, depending on the stages targeted in the har-
est. When the initial population is N0 = [500 300 200]′ then
he equilibrium population size appears to be smaller than the
nitial population size under all harvest strategies.

. Transient dynamics and population
omentum

e have seen in our example that given an initial population
f 1000 individuals, different harvest strategies can produce
ifferent short-term and long-term results even if all harvest
trategies involve the repetition of a harvest that satisfies the
quilibrium condition. Population momentum is one measure
f the long-term outcome of managing using the equilibrium
ondition. It is defined as

= lim
t→∞

|Nt|
|N0| ,

here |N| denotes the total number of individuals in N
Caswell, 2001). This is the ratio of the long-term population
ize to the initial population size. For example if M = 1.1, then
he long-term population size is 10% larger than the initial
individuals (momentum M = 1.02). In case (c), the population
initially has a high proportion of breeding adults compared to
the equilibrium population, causing an increase, and the same
process of damped oscillations occur over time (momentum
M = 1.05).

Specifying a target population momentum might be con-
sidered an appropriate objective in the context of population
control (see the Appendix A for an outline of this problem).
However, we have seen in the example above that transient
dynamics can have large influence on population abundance
when the stage-structure of the population is initially very dif-
ferent to the target stage-structure. In the first year, abundance
may even change in the opposite direction to the long-term
objective. If harvest decisions are made dynamically, then ob-
jectives relating to abundance may not be optimally met in
the short-term when we manage for a target population mo-
mentum, or any other measure of long-term or equilibrium
dynamics. Short-term strategies would be better developed
using a method such as dynamic programming when the pop-
ulation structure is markedly different from the target equi-
librium structure.

6. Partial control and observation

Let us briefly return to the unstructured model (10). To
compare this model with our example involving three stage-
classes, we set N0 = 1000 and � = 1.309. From the equilibrium
condition (11) we might choose to remove 300 individuals
from the population, with the intention of allowing the pop-
ulation to grow slightly over the next time step (N1 = 1009).
If the population actually has the life history characteristics
given in (12), then we might observe the population to decline
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over the next time step instead. This could arise if there
is a large proportion of adults removed during the harvest,
or a small proportion of adults in the initial population.
Conversely the population could increase to an abundance
much larger than expected if mostly 1-year-olds are re-
moved, or there is a large proportion of adults in the initial
population.

During dynamic decision-making it is possible to respond
to these kinds of observations by resetting the harvest level
in the following time step, instead of repeatedly removing
the same number of individuals each time step. Optimiza-
tion methods such as dynamic programming can take into
account the effects of population momentum and transient
dynamics if the full stage-structure of the population is in-
cluded as a number of state variables. If the population has a
large number of stages then this may become computationally
intractable, and the results difficult to interpret. Furthermore,
it is often difficult to observe the full stage-structure of a pop-
ulation at each time step. The monitoring required is likely to
be more intensive than if only total abundance is estimated.
In some cases distinguishing between stages visually may be
impossible.

Similarly, it may be difficult to select individuals by stage for
harvest. Managers may be unable to set regulations that tar-
get particular stages, or harvesters may be unable to visually
distinguish between stages. In a dynamic optimization, the
available management options can usually be constrained ap-

7. Conclusions

Harvest management is never a simple task. The challenges of
harvest management are compounded when structured pop-
ulations are considered. We have shown that when popula-
tions are structured (based on age or some other demographic
variable), the harvest required to achieve an equilibrium ob-
jective depends on initial population size, structure and repro-
ductive value at the time of harvest.

Although derivation of the equilibrium harvest vector for
simple structured models is straightforward, there are several
potential difficulties in practice. First, uncertainty concerning
the population structure at the time of harvest, and the abil-
ity to specify the structure of the harvest itself, are significant
complications to population control. There will be substantial
uncertainty about the system dynamics, the impacts of poten-
tial management and conservation decisions on those dynam-
ics, and about how to optimize management decisions in the
presence of such uncertainties (e.g. Hunter and Runge, 2004).
These difficulties are compounded by the non-linear change
in the dynamics of the population following harvest.

In practice, most systems are only partially specified
(observable). Accommodating partial observability in an
optimized adaptive framework (sensu Walters, 1986; Nichols
et al., 1995; Williams, 1996, 1997) requires specifying the
statistical association between the estimated current state of
propriately for these situations. For example, in many species,
young inexperienced individuals are more susceptible (vulner-
able) to harvest than are older individuals. In an optimization
of harvest on a population of such species, the realized har-
vest rate on each stage-class is assumed to be proportional
to the vulnerability of an individual in that stage-class, rel-
ative to adult individuals (e.g., Hauser et al., 2005). In some
other studies, it is assumed that the harvest rate is applied
evenly to all age-classes (Jensen, 1996, 2000; Pascual et al.,
1997).

In commercial fisheries, it is common that the mesh size of
the fishnets used will catch only or mostly individuals above
a certain size class. An appropriate constraint may be that
the harvest rate acts equally on all size classes above this
level, while all individuals in smaller size classes escape har-
vest (Doubleday, 1975; Reed, 1980). We might imagine that the
mesh size could be chosen as part of the optimization process,
to increase the manager’s ability to control the stage-structure
of the harvest. In any case, such constraints are likely to limit
the range of actions available to the manager. For example,
there is only one stage-specific harvest that would satisfy both
a vulnerability constraint and the equilibrium condition in this
paper.

In other systems, some stage-selective harvesting may
be possible using broad classes. Studies modelling impala
(Ginsberg and Milner-Gulland, 1994), saiga antelope (Milner-
Gulland, 1994), deer (Xie et al., 1999), moose (Sæther et al.,
2001) and Buffon’s kob (Mayaka et al., 2004) have used the as-
sumption that there is some control over the number of adults
and young, and/or males and females in the harvest taken, al-
though there may be some incidental harvest of other classes
(Xie et al., 1999) or poaching (Mayaka et al., 2004) beyond the
control of managers.
the system and the underlying distribution of possible system
states. Derivation of the function relating current state given
the distribution is difficult without simplifying assumptions.
Further, accommodating partial observability in an adaptive
optimization framework requires estimation of the transition
probabilities for every state in the system, which is likely
to be computationally intensive. Finally, in many cases,
optimal strategy sets become stationary over a sufficiently
long time horizon, such that the stationary strategy becomes
the optimal strategy over the long-term. However, in some
cases, especially involving structured populations, there may
be no stationary solution, and the optimal strategy set may
cycle among different management actions.
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Appendix A. Finding the harvest that gives a
target momentum

Here we determine the harvest strategies that will satisfy the
equilibrium condition and achieve a target level of popula-
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tion momentum in the long-term. We consider both the con-
stant and proportional harvest models (Eqs. (3) and (4), respec-
tively).

A.1. Constant harvest

Let the population have m stage-classes. Then the equilibrium
condition (7) can be written as

v1N
eq
1 + v2N

eq
2 + · · · + vmN

eq
m = v′N0,

where v = [v1 v2 . . . vm]′ is the left eigenvector of A correspond-
ing to the dominant eigenvalue �, and Neq = [Neq

1 N
eq
2 . . . N

eq
m ]′

is the long-term equilibrium population size and structure. We
assume that we know the initial size and structure N0 of the
population, so that the right hand side of the equation is a
known constant.

Additionally, we must set the population momentum at the
desired level M. We can rearrange

M = |Neq|
|N0|

so that
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A.2. Proportional harvest

We can similarly state the problem for proportional harvest,
using the equilibrium condition (15), the momentum equation
and constraints that ensure the population and harvest are
nonnegative. We must choose Neq = [Neq

1 N
eq
2 . . . N

eq
m ]′ and h =

[h1 h2 . . . hm]′ such that

(1 − hi)(ai1N
eq
1 + ai2N

eq
2 + · · · + aimN

eq
m ) = N

eq
i

N
eq
1 + N

eq
2 + · · · + N

eq
m = Me′N0

subject to:

N
eq
i

≥ 0

hi ≥ 0

hi ≤ 1

for i = 1, 2, . . . , m.
Then we have m + 1 equations with 2m unknowns, subject

to 3m constraints.

references

Beddington, J.R., Taylor, D.B., 1973. Optimum age specific

1 + N2 + · · · + Nm = Me N0,

here e is an m × 1 vector of ones. If we have set a required
omentum M, then the right hand side of this equation is also

onstant.
Finally, we must ensure that both the harvest taken and

he equilibrium population are non-negative. That is

i ≥ 0 and N
eq
i

≥ 0 for i = 1, 2, . . . , m.

sing Eq. (6) we can rewrite Yi ≥ 0 as

i1N
eq
1 + ai2N

eq
2 + · · · + aimN

eq
m ≥ N

eq
i

for i = 1, 2, . . . , m.

To summarize, we are seeking Neq = [Neq
1 N

eq
2 . . . N

eq
m ]′ such

hat

v1N
eq
1 + v2N

eq
2 + · · · + vmN

eq
m = v′N0

N
eq
1 + N

eq
2 + · · · + N

eq
m = Me′N0

ubject to

ai1N
eq
1 + ai2N

eq
2 + · · · + aimN

eq
m ≥ N

eq
i

N
eq
i

≥ 0 for i = 1, 2, . . . , m.

We have two equations with m unknowns, subject to 2m

onstraints. When we have determined the solution Neq then
e can find the harvest Y required as

= (A − I)Neq.
harvesting of a population. Biometrics 29 (4), 801–809.
Brooks, E.N., Lebreton, J.-D., 2001. Optimizing removals to control

a metapopulation: application to the yellow legged herring
gull (Larus cachinnans). Ecol. Modell. 136, 269–284.

Caswell, H., 2001. Matrix Population Models, second ed. Sinauer
Associates, Sunderland, Massachusetts.

Doubleday, W.G., 1975. Harvesting in matrix population models.
Biometrics 31, 189–200.

Fisher, R.A., 1958. The Genetical Theory of Natural Selection,
second ed. Dover, New York.

Fox, G.A., Gurevitch, J., 2000. Population numbers count: tools for
near-term demographic analysis. Am. Nat. 156 (3), 242–256.

Getz, W.M., 1980. The ultimate-sustainable-yield problem in
nonlinear age-structured populations. Math. Biosci. 48,
279–292.

Getz, W.M., Haight, R.G., 1989. Population Harvesting:
Demographic Models of Fish, Forest and Animal Resources.
Princeton University Press, Princeton, NJ.

Ginsberg, J., Milner-Gulland, E., 1994. Sex-biased harvesting and
population dynamics in ungulates: implications for
conservation and sustainable use. Conserv. Biol. 8 (1), 157–166.

Harley, P.J., Manson, G.A., 1981. Harvesting strategies for
age-stable populations. J. Appl. Ecol. 18, 141–147.

Hauser, C.E., Runge, M.C., Cooch, E.G., 2005. Optimal control of
Atlantic population Canada geese. MODSIM 2005
International Congress on Modelling and Simulation,
Melbourne, Australia, pp. 2075–2081.

Hunter, C.M., Runge, M.C., 2004. The importance of
environmental variability and management control error to
optimal harvest policies. J. Wildlife Manage. 68 (3), 585–594.

Jensen, A.L., 1996. Density-dependent matrix yield equation for
optimal harvest of age-structured wildlife populations. Ecol.
Modell. 88, 125–132.

Jensen, A.L., 2000. Sex and age structured matrix model applied
to harvesting a white tailed deer population. Ecol. Modell. 128,
245–249.

Keyfitz, N., 1971. On the momentum of population growth.
Demography 8 (1), 71–80.



470 e c o l o g i c a l m o d e l l i n g 196 (2006) 462–470

Koons, D.N., Grand, J.B., Zinner, B., Rockwell, R.F., 2005a. Transient
population dynamics: relations to life history and initial
population state. Ecol. Modell. 185, 283–297.

Koons, D.N., Rockwell, R.F., Grand, J.B., 2005b. Population
momentum: implications for wildlife management. J. Wildlife
Manage. 70 (1), 19–26.

MacArthur, R.H., 1960. On the relation between reproductive
value and optimal predation. Proc. Natl. Acad. Sci. 46, 143–145.

Mayaka, T.B., Stigter, J.D., Heitkönig, I.M., Prins, H.H., 2004. A
population dynamics model for the management of Buffon’s
kob (Kobus kob kob) in the Bénoué National Park Complex,
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