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Abstract. Demographic perturbation analysis explores how population statistics (es-
pecially population growth rate l) respond to changes in the vital rates (survival, growth,
development, reproduction, and so on). Perturbation analysis is used in two logically distinct
ways. Prospective analyses (sensitivity and elasticity) explore the functional dependence
of l on the vital rates. They predict the changes in l that would result from any specified
change in the vital rates and are independent of previous patterns of variability of the vital
rates. Retrospective analyses (life table response experiment [LTRE] methods and other
kinds of variance decomposition) express observed variation in l as a function of observed
(co)variation in the vital rates. Their results are specific to the observed pattern of variation.
Sensitivity and elasticity analysis can be used to identify potential management targets
because changes in vital rates with high sensitivity or elasticity will produce large changes
in l. Sometimes that potential may not be realized because it is difficult or impossible to
change those vital rates. Retrospective analyses cannot identify potential management tar-
gets because they compare the contributions of past changes in vital rates, not the effects
of future changes. Just as the results of heritability analysis say nothing about the efficacy
of clinical treatments, so the results of retrospective analysis say nothing about the efficacy
of potential management tactics. Perturbation analysis is a powerful tool with important
implications for conservation. It is important that perturbation analyses be applied properly.

Key words: conservation biology; elasticity analysis; life table response experiments; matrix
population models; population growth rate; sensitivity analysis.

INTRODUCTION

Demographic perturbation analysis asks how popu-
lation statistics respond to changes in the vital rates (a
collective term for rates of survival, growth, devel-
opment, reproduction, and so on; some vital rates ap-
pear as projection matrix entries, others as lower level
parameters that determine matrix entries [Caswell
1989a]). One of the most important of these statistics
is the asymptotic population growth rate l (or r 5 log
l). If the vital rates are incorporated into a population
projection matrix A, then l is the dominant eigenvalue
of A. Twenty years ago a simple formula was presented
for the sensitivity of l to changes in the stage-specific
vital rates (Caswell 1978). Since then, many new an-
alytical developments have appeared, including life-
cycle graph analyses (Hubbell and Werner 1979, Ca-
swell 1982), eigenvector sensitivities (Caswell 1980,
1989a), transient sensitivities (Caswell 1989a), elas-
ticities (Caswell et al. 1984, de Kroon et al. 1986, Mes-
terton-Gibbons 1993), second derivatives of l (Caswell
1996a), and loop analysis (van Groenendael et al. 1994,
Wardle 1998). Perturbation analyses have been ex-
tended to periodic models (Caswell and Trevisan 1994),
stochastic models (Tuljapurkar 1990, Benton and Grant
1996, Dixon et al. 1997, Caswell 2000), and density-
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dependent models (Takada and Nakajima 1992, 1996,
1998, Grant 1997, Grant and Benton 2000).

As a result, perturbation analysis is now a standard
tool in demography. It has been widely applied to evo-
lutionary life history theory (Roff 1992, Stearns 1992),
to quantifying uncertainty in parameter estimates, to
comparing the effects of potential management strat-
egies, and to figuring out why l changes in response
to environmental factors.

Perturbation analysis is used in two logically distinct
ways. They employ different methods, require different
interpretations, and are useful in different contexts. But
the distinction between them is subtle, and has been
overlooked in some of the recent literature. In an at-
tempt to clarify the situation, I introduced the terms
‘‘prospective’’ and ‘‘retrospective’’ to distinguish the
two approaches (Caswell 1997, Horvitz et al. 1997).
My goal here is to explore this distinction and show
why it is important in conservation biology. I will focus
on linear deterministic models, and on l as a demo-
graphic statistic, but my conclusions also apply to other
dependent variables, and to stochastic and density-de-
pendent models.

PROSPECTIVE AND RETROSPECTIVE ANALYSIS

Population growth rate l is a function of the vital
rates. Prospective analyses explore this functional de-
pendence. They look, as it were, forward, and ask how
much l would change in response to specified changes
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in one or more of the vital rates. The functional de-
pendence of l on the vital rates is a property of the
life history, and is independent of any actual variation
in those rates. Indeed, it can be used to calculate ac-
curately the consequences of impossible changes (if
pigs had wings; see Horvitz et al. 1997). Prospective
analyses tell nothing about how the vital rates have
varied in the past, are varying now, or might vary in
the future, and knowledge of how the rates actually
vary contributes nothing to prospective analyses.

Because prospective analyses project the conse-
quences of future changes in the vital rates, they have
become an important tool in life history theory (where
the changes might result from natural selection) and
conservation biology (where the changes might result
from implementation of management tactics).

In contrast, retrospective analyses are not concerned
with the functional dependence of l on the vital rates.
They express variation in l as a function of variation
in the vital rates. They look backwards, as it were, at
observed variation in the vital rates, and ask how that
variation expressed itself as variation in l. If a vital
rate did not vary, it can have made no contribution to
the observed variation in l, no matter what the func-
tional dependence of l on that rate. The results of a
retrospective analysis are specific to the observed var-
iation in the vital rates, and can be extrapolated to other
situations only with great care.

Prospective and retrospective analyses rely on dif-
ferent kinds of data: the former on a single matrix from
which l can be calculated, the latter on a set of matrices
from which the variance in l can be calculated. (The
fact that all demographic analyses begin with data,
from which l and everything else is computed, is not
relevant. The distinction between prospective and ret-
rospective analyses is not whether they depend on the
values of the vital rates, but whether they depend on
variability in those values.)

Tools for Prospective Analysis

Powerful tools exist for both prospective and ret-
rospective analysis (reviewed in Caswell [2000]). The
population growth rate l is given by the dominant ei-
genvalue of A, and the stable stage distribution w and
reproductive value vector v are the corresponding right
and left eigenvectors. Without loss of generality, I will
assume that the scalar product vTw 5 1, where vT is
the transpose of v.

Suppose that the matrix A is perturbed to a new
matrix A 1 dA, where dA is a matrix of perturbations
(with no restriction on how many of the aij are per-
turbed). The effect on l is the differential

Tdl 5 v (dA)w. (1)

If only one entry, say aij, changes, the result is the
sensitivity:

]l
5 v w (2)i j]aij

(Caswell 1978, 1989a).
Imagine l plotted as a multidimensional surface as

a function of the aij. The sensitivity (Eq. 2) is the slope
of this surface in the direction of changing aij, holding
all the other entries constant. Sensitivity is a derivative,
and is thus a local analysis, focusing on the neighbor-
hood of the point in parameter space where A is eval-
uated. Since l is not a linear function of the aij, the
slope changes from one point on the surface to another.

If more than one rate is changed simultaneously, Eq.
1 shows how to compute the resulting change in l;
when written out, it says

dl 5 v w da (3)O i j ij
ij

]l
5 da . (4)O ij]aij ij

If some factor x affects many of the aij (e.g., temper-
ature might affect growth rate of all size classes), then
the total derivative of l is

]adl ]l ij
5 . (5)O

dx ]a ]xij ij

Thus sensitivities can be used to compute the change
in l resulting from simultaneous changes in many of
the vital rates.

The elasticity, or proportional sensitivity (Caswell
et al. 1984, de Kroon et al. 1986) of l is given by

] log l
e 5 (6)ij ] log aij

a ]lij
5 . (7)

l ]aij

Imagine a multidimensional surface plotting log l as
a function of the log aij. The elasticity is the slope of
this surface, in the direction of varying log aij, holding
all other variables fixed. It is also a local analysis.

Equal intervals on a logarithmic scale correspond to
equal proportions on an arithmetic scale. Thus the elas-
ticity gives the proportional change in l caused by a
proportional change in aij. This makes elasticity a pop-
ular way to compare the effects of changes in vital
rates that are measured on different scales (e.g., sur-
vival, which is bounded by zero and one, and fertility,
which may be arbitrarily large). However, sensitivities
can equally be used for such comparisons. Elasticity
analysis is often used to identify attractive targets for
management interventions. This use is supported by
the following simple argument. A management strategy
is designed to change the vital rates. If it changes a
rate to which the elasticity of l is large, it will have a
bigger impact on l than if it changes, by the same
proportion, a rate to which the elasticity of l is small.
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The most famous application is to the loggerhead sea
turtle (Crouse et al. 1987, Crowder et al. 1994; see also
Doak et al. [1994] and Heppell et al. [1994]).

Both sensitivities and elasticities are derivatives;
their predictions of changes in l become more accurate
as the changes in the aij become smaller. Because l is
a nonlinear function of the aij, these derivatives cannot
be expected to give accurate predictions of the result
of large perturbations. In practice, however, l is often
close to linear (Caswell 1996a), and the elasticities and
sensitivities do a remarkably good job of predicting the
results of even moderately large perturbations. But, if
one wants to avoid difficulties with large perturbations,
numerical simulations are a valuable tool. One simply
changes the entries in A, following a rule that tells how
the different entries vary, and evaluates the resulting
value of l.

The calculation of sensitivities and elasticities de-
pends only on A. The observed variability in the vital
rates appears nowhere in Eqs. 1 or 7, so it has no
influence on sensitivity or elasticity. The total deriv-
atives, as in Eqs. 1 or 5, depend on the functional
dependence of l on all the aij, and on the local func-
tional relationships among the aij. Van Tienderen
(1995) calls these integrated sensitivities, although he
emphasizes that only the name, and not the concept, is
new. Covariances appear in his formulae, but only as
estimates of slopes of functional relationships (i.e., as
ratios of covariances to variances). As such, they are
independent of observed variation, and van Tienderen
quite rightly points out that the relationships can be
estimated in other ways as well.

Tools for Retrospective Analysis

Retrospective analysis looks back at an observed pat-
tern of variation in the vital rates and asks how that
pattern has affected variation in l. The factors causing
the variation in the vital rates can be thought of, in
very general terms, as ‘‘treatments’’ in an ‘‘experi-
ment’’ (even if they are observational rather than ma-
nipulative). Powerful methods are available for such
life table response experiments (LTREs; Levin et al.
1987, 1996, Caswell 1989a, b, 1996b, c, 1997, 2000,
Silva et al. 1991, Walls et al. 1991, Brault and Caswell
1993, Horvitz et al. 1997). These papers contain meth-
ods specific to a variety of experimental designs (see
especially Caswell 1996b), but here I will focus on a
simple approach to variance decompositions in a ran-
dom design (Brault and Caswell 1993; H. Caswell and
P. Dixon, unpublished results).

Suppose that matrices A1, A2, . . . , AN, have been
observed under N different conditions (e.g., different
locations, or different years, or different subpopula-
tions). They yield a set of growth rates l1, l2, . . . , lN.
The variability in l generated by this set of vital rates
is characterized by the variance:

21 (S l )i i2V(l) 5 l 2 .O i[ ]N 2 1 Ni

The goal of the analysis is to decompose V(l) into
contributions from the variability in the vital rates. This
is done by writing, to first order,

]l ]l
V(l) ø cov(a , a ) (8)O O ij kl ]a ]ai,j k,l ij kl

2
]l ]l ]l

5 V(a ) 1 cov(a , a ) (9)O Oij ij kl1 2]a ]a ]aij ij±klij ij kl

where cov denotes the covariance. Each of the terms
in the summation is a contribution of the covariance
between a pair of the vital rates to the variance in l.

Some recent approaches to variance decomposition
have left out the covariance terms and written

2
]l

V(l) ø V(a ) (10)O ij 1 2]aij ij

(Wisdom and Mills 1997, Ehrlén and van Groenendael
1998, Pfister 1998). This formula is incorrect unless
the vital rates vary independently. In theoretical cal-
culations it is sometimes necessary to assume inde-
pendence for lack of a reasonable hypothesis about
covariation (Caswell et al. 1998), but such assumptions
should be made only when necessary and stated clearly.
As far as data are concerned, every case examined to
date includes prominent covariances among the vital
rates, and in two of the three cases those covariances
make large contributions to V(l) (Brault and Caswell
1993, Horvitz et al. 1997, and the examples shown
below). Moreover, on strictly biological grounds, there
is every reason to expect covariance among the vital
rates. Positive covariances are expected when the vital
rates of different stages are determined by the same
biological mechanisms (e.g., a good location for growth
of small plants is probably a good location for the
growth of large plants). Negative covariances are ex-
pected when different stages are adapted to different
conditions. Thus, in analyzing demographic data sets,
in which the covariances are readily available, they
should be incorporated into the variance decomposi-
tion. (Computational convenience is no reason to ig-
nore covariances; given a set of matrices and a sen-
sitivity matrix, it takes only three MATLAB commands
to obtain the complete covariance and contribution ma-
trices.)

Taking the square root of Eqs. 9 or 10 gives the
standard deviation of l. However, if we use Eq. 10 for
simplicity, note that

2
]l

SD(l) 5 V(a ) (11)O ij 1 2! ]aij ij

]l
± SD(a ) . (12)O ij ]aij ij
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Ehrlén and van Groenendael (1998) propose a formula
equivalent to Eq. 12 as a way to decompose the ‘‘var-
iation’’ in l into contributions. They do not say if they
are thinking of variation in terms of V(l) or SD(l), but
clearly Eq. 12 gives neither.

The contributions to V(l) are made by pairs of matrix
entries. Horvitz et al. (1997) suggested defining a
summed contribution of each matrix entry as

]l ]l
x 5 cov(a , a ) . (13)Oij ij kl ]a ]ak,l ij kl

This index sums the contributions of the variance in aij

and all the covariances involving aij; half of the con-
tribution of cov(aij, akl) is allocated to ij and half to kl.
The value of ij may be positive or negative. If it is
negative, it says that the observed pattern of variability
involving aij acted to reduce V(l).

RETROSPECTIVE ANALYSIS APPLIED TO PROSPECTIVE

QUESTIONS

The decomposition of variance is a retrospective
analysis. The covariance terms in Eqs. 9 and 13 depend
on a specific, observed, pattern of covariation in the
vital rates. They show how V(l) was produced by that
set of environments, but do not predict how l will
respond to future changes in the vital rates. Sensitivities
and elasticities do make such predictions, because they
describe the functional dependence of l on the aij, re-
gardless of how, or whether, aij varied in the past.

Recently a number of workers have tried to use ret-
rospective analysis to answer the prospective question,
‘‘What will happen if we change the vital rates in this
or that way?’’ An example is the recent study by Wis-
dom and Mills (1997) of the Prairie Chicken (Tym-
panuchus cupido pinnatus). Concerned with the recov-
ery of the species, they wanted to know whether in-
creasing nest success and brood survival were good
management tactics.

To answer this question, they constructed an age-
classified model, and obtained minimum and maximum
estimates for each of the parameters from the literature.
These ranges included both spatiotemporal variability
and measurement uncertainty. They generated a large
set of matrices by drawing each parameter indepen-
dently from a uniform distribution over its minimum-
to-maximum range. They regressed l against each pa-
rameter individually, and calculated the coefficient of
determination R2 (i.e., the proportion of variance in l
explained by variation in that parameter).

So far, this is a somewhat laborious way to estimate
the relationship in Eq. 9, with the covariances assumed
to be zero and the sensitivities replaced by the slope
of the regression line. However, when they found that
the R2 values for each parameter were only weakly
correlated with the sum of all the elasticities involving
that parameter, they concluded that elasticities are not
a reliable guide to the effects of changes in the vital

rates and that R2 is a better indication of its potential
value to management (Wisdom and Mills 1997: 310):

Thus if management relied exclusively on elasticity
calculations to prioritize recovery efforts, one might
assume that increasing the vital rates having the sec-
ond or third highest elasticity would yield positive
non-linear changes in l (Caswell 1989[a]). This was
not true when variance in the vital rates was con-
sidered . . . . [A] modeling process like that used here
could help prioritize management or modeling ef-
forts. This could be done by identifying those vital
rates or life stages that presumably have greatest
effect on l . . . .

But since the elasticities are independent of the par-
ticular pattern of variation in the vital rates, there is
no reason to expect them to correlate with the contri-
butions to variance generated by one particular pattern.
Nor does an observed pattern of variation say anything
about the effect of future changes in the vital rates.
Thus, the contributions to V(l) will not in general iden-
tify management tactics that will yield large positive
changes in l. The effect of increasing a vital rate de-
pends only on the functional relationship between that
rate and l, not on how that vital rate has varied in the
past. Contrary to Wisdom and Mills’ (1997) claim, in-
creasing the vital rate with the second highest elasticity
would indeed have yielded positive changes in l. Ret-
rospective analysis of past vital rate variation cannot
predict the impact of future changes in the vital rates.

TWO EXAMPLES

To demonstrate the difference between prospective
and retrospective analyses, I will compare the patterns
of elasticity and of contribution to V(l) in two plant
populations. I will show that elasticity, and not the
contribution to variance, successfully predicts the ef-
fects of changing vital rates.

The first example uses a set of 16 stage-classified
matrices (seeds, seedlings, juveniles, pre-reproduc-
tives, and small, medium, large, and extra-large flow-
ering plants) for Calathea ovandensis, a forest under-
story herb in Mexico. The matrices were obtained at
four sites over four years by Horvitz and Schemske
(1995). Perturbation analyses, both prospective and ret-
rospective, can be found in Horvitz et al. (1997).

The second example is based on 17 stage-classified
matrices for another perennial forest herb, Lathyrus
vernus (Ehrlén 1995). Individuals were classified as
seeds, dormant seeds, seedlings, very small, small, in-
termediate, or large plants. The 17 matrices were ob-
tained at six sites, over three years, in Sweden. In each
population, the environmental variability generated
considerable variation in l, as shown in Fig. 1.

Figs. 2 and 3 show the covariances among the aij,
and the contributions of those covariances to V(l), for
each population. There are large covariances among
the vital rates. The most conspicuous aspect of the
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FIG. 1. The values of log l for 16 populations of Calathea ovandensis (Horvitz and Schemske 1995) and 17 populations
of Lathyrus vernus (Ehrlén 1995).

covariance surface for C. ovandensis is the positive
values representing the variances in, and covariances
among, the fertilities. In this sample of environments,
a good year or a good location for fertility of one size
class tends to be good for all size classes. The co-
variance surface for L. vernus is dominated by variance
in, and covariance among, seed production by large
plants and germination of dormant seeds.

Figs. 2 and 3 also show the contributions of the
variances and covariances to V(l). It is apparent that
the pattern of contributions is different from the pattern
of covariances (because of the role of sensitivity) and
that off-diagonal elements, corresponding to contri-
butions from covariances, are prominent for both spe-
cies.

In C. ovandensis, the largest contribution to variance
in l comes from the variance in a31, the transition from
seeds to juveniles. The large positive covariances
among the fertilities make only a tiny contribution to
V(l). In L. vernus, the largest contribution is from the
variance in a65, the growth from intermediate to large
plants. There are also large contributions from the var-
iances in a54 and a66 and from the covariance between
a65 and a66.

The elasticities are only weakly related to these con-
tributions. Fig. 4 plots the summed contributions (xij)
against the elasticities eij. For each species, the vital
rate with the highest elasticity (a55 for C. ovandensis
and a44 for L. vernus) and that with the highest con-
tribution to variance (a31 in C. ovandensis and a65 in

L. vernus) are indicated. The vital rates with highest
elasticities make negligible contributions to V(l).

Note that, in both species, the highest elasticities are
for stasis of intermediate-sized plants, while the largest
contribution to V(l) is in one case a growth rate and
in the other a seed germination probability. The elas-
ticities reflect the life histories (which happen to be
similar for these two forest understory herbs) and the
functional dependence of l on the life history. The
contributions to V(l) reflect the particular range of en-
vironments observed, which happen to be different.

Now suppose that a perturbation, such as might be
produced by a management intervention, increases or
decreases one of the vital rates. How much can the
variance contributions tell about the effect of such
changes? Not much. Fig. 4 compares the response of
l to changes (from 210% to 110%) in the vital rate
with the highest elasticity and in the vital rate with the
highest contribution to variance. (These curves were
calculated by actually varying the matrix entries. That
they are nearly linear shows how well the elasticity can
predict the results of changes of even this relatively
large magnitude.) In each species, the effect on l of a
change in the vital rate with high elasticity is large,
even though its contribution to variance is small. If
you, as a manager wanted to increase the growth rate
of C. ovandensis or L. vernus, the message is clear.

DISCUSSION

Difficulties with prospective and retrospective ana-
lyses in demography are no surprise; the same issues



S
pe

c
ia
l

Fe
at

u
r
e

624 HAL CASWELL Ecology, Vol. 81, No. 3

FIG. 2. The covariances of matrix entries, cov(aij, akl), and
the contributions of those covariances to the variance V(l)
for C. ovandensis. The matrix entries are plotted in column
order, i.e., the entries in the first column, followed by the
second column, and so on.

FIG. 3. The covariances of matrix entries, cov(aij, akl), and
the contributions of those covariances to the variance V(l)
for L. vernus. The matrix entries are plotted in column order,
i.e., the entries in the first column, followed by the second
column, and so on.

have long plagued the interpretation of heritability in
quantitative genetics. Heritability is the contribution of
additive genetic variance to the total phenotypic var-
iance. As a variance contribution, it is a retrospective
calculation, specific to the population and the range of
environments observed. Great controversy has been
generated by the common mistake of interpreting her-
itability (e.g., of IQ) in a prospective sense, concluding
that environmental interventions (e.g., education) can-
not change traits with high heritability. Lewontin
(1974) points out that this belief is erroneous:

. . . the fallacy is that a knowledge of the heritability
of some trait in a population provides an index of
the efficacy of environmental or clinical intervention
in altering the trait.

Lewontin (1974) also emphasized the same distinc-
tion between functional relationships and variance con-
tributions that I am making here:

. . . [variance decomposition] is a local analysis. It
gives a result that depends upon the actual distri-
bution of genotypes and environments in the partic-

ular population sampled . . . and is not a statement
about functional relations.

Unlike geneticists, demographers have ready access
to the functional relations between l and the vital rates.
Prospective analysis in genetics would require a theory
connecting genotype and environment, through the de-
velopmental system, to the eventual phenotype. Despite
many people’s efforts, no such theory exists.

Prospective and Retrospective Analysis in
Conservation Biology

The utility of prospective analyses, using sensitivity
or elasticity, in conservation biology is clear. If you
change a vital rate with a high elasticity by a given
proportion, then you will change l more than if you
make the same proportional change in any rate with
lower elasticity. Thus prospective analysis identifies
the most effective potential targets for management
interventions, if the goal of such intervention is to
change l.

Several recent papers have tried to apply retrospec-
tive analysis to conservation biology (Wisdom and
Mills, 1997, Crooks et al. 1998, Ehrlén and van Gro-
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FIG. 4. Upper panels: the summed contributions xij to the variance V(l) as a function of the elasticities eij of l (note log scales
for x-axes). The vital rates with the largest elasticities and the largest variance contributions are indicated. Lower panels: The effect
on l of changes (from 210% to 110%) in the rate with the highest elasticity and the highest variance contribution.

enendael 1998). Careful study of these analyses con-
vinces me that they are flawed.

Suppose some vital rate is under consideration as a
management target. How should a conservation biol-
ogist interpret a retrospective calculation of the con-
tribution of a vital rate to V(l)? Wisdom and Mills
(1997), as quoted above, believe that the contribution
of aij to V(l) is a better guide to management than is
the elasticity eij. Ehrlén and van Groenendael (1998)
and Crooks et al. (1998) are more ambiguous, but seem
to believe that the relative contributions to V(l) will
show how likely it is that potential effects of a man-
agement intervention are actually realized.

Consider the following case. Suppose that aij is being
considered as a target for management action. Suppose
that the elasticity of l to aij is large, so that aij is an
attractive target, because all else being equal, a change
in aij will have a big effect on l. But suppose that a
data set exists in which aij does not vary much, so that
its variation makes only a small contribution to V(l).
The implications of the small contribution of aij to V(l)
depend on why aij does not vary much in the obser-
vations at hand.

On the one hand, aij might be physiologically or ar-

chitecturally constrained; if so, it is a bad target for
management, regardless of its elasticity, because it can-
not be modified. Emperor penguins, for example, lay
only a single egg. They hold it on top of their feet in
the middle of the frigid antarctic winter. There is only
room for one egg. Clutch size enlargement would be
a poor target for penguin management, no matter what
the elasticity of l to clutch size, because it cannot be
accomplished. But low variance in aij does not always
make it a bad target. Suppose that aij was nesting suc-
cess in a hole-nesting bird, and that the elasticity of l
to changes in nesting success was high (e.g., Heppell
et al. 1994). Suppose that aij made only a small con-
tribution to V(l) because the data for the retrospective
analysis came from a forest with a fixed density of
nesting holes. Improving nesting success would be an
attractive option, if the manager knows how to increase
the number of nesting cavities (by deploying nest boxes
or drilling holes).

In these hypothetical examples, variance in penguin
clutch size and in woodpecker nesting success both
have low contributions to V(l). However, that fact does
not define their potential as targets for management.

Similarly, vital rates with large contributions to V(l)
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may be unattractive targets for management. Recruit-
ment in marine invertebrates and fishes, for example,
is notoriously variable. I can imagine that it might make
an overwhelming contribution to V(l) in some data set.
But it might be an unattractive management target for
management, because it is subject to so much envi-
ronmental variability, due to so many impossible-to-
control factors, that any management intervention
would be swamped by environmental noise.

These examples prove that the contributions of the
aij to V(l) by themselves say nothing about the merits
of aij as a management target. In each example, the
potential value of aij as a management target is revealed
by the elasticity of l to aij (the prospective question).
Whether that potential can be realized is revealed, not
by a retrospective analysis of variation, but by careful
consideration of the biological mechanisms determin-
ing, and constraints limiting, the manager’s ability to
change the rate under consideration.

Suggesting that retrospective analyses can predict
the effects of new management interventions obscures
the demographic underpinnings of conservation biol-
ogy and misleads managers confronted with difficult
decisions about endangered species.
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