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Abstract

Background: For diagnosis of neuropsychiatric disorders, a categorical classification system is often utilized as a simple way
for conceptualizing an often complex clinical picture. This approach provides an unsatisfactory model of mental illness,
since in practice patients do not conform to these prototypical diagnostic categories. Family studies show notable familial
co-aggregation between schizophrenia and bipolar illness and between schizoaffective disorders and both bipolar disorder
and schizophrenia, revealing that mental illness does not conform to such categorical models and is likely to follow a
continuum encompassing a spectrum of behavioral symptoms.

Results and Methodology: We introduce an analytic framework to dissect the phenotypic heterogeneity present in
complex psychiatric disorders based on the conceptual paradigm of a continuum of psychosis. The approach identifies
subgroups of behavioral symptoms that are likely to be phenotypically and genetically homogenous. We have evaluated
this approach through analysis of simulated data with simulated behavioral traits and predisposing genetic factors. We also
apply this approach to a psychiatric dataset of a genome scan for schizophrenia for which extensive behavioral information
was collected for each individual patient and their families. With this approach, we identified significant evidence for linkage
among depressed individuals with two distinct symptom profiles, that is individuals with sleep disturbance symptoms with
linkage on chromosome 2q13 and also a mutually exclusive group of individuals with symptoms of concentration problems
with linkage on chromosome 2q35. In addition we identified a subset of individuals with schizophrenia defined by language
disturbances with linkage to chromosome 2p25.1 and a group of patients with a phenotype intermediate between those of
schizophrenia and schizoaffective disorder with linkage to chromosome 2p21.

Conclusions: The findings presented are novel and demonstrate the efficacy of this approach in detection of genes
underlying such complex human disorders as schizophrenia and depression.
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Introduction

Emil Kraepelin’s descriptions of psychiatric diagnoses at the
turn of the 20th century were groundbreaking and remain
influential to this day. Kraepelin’s dichotomous classification of
manic-depressive insanity (bipolar disorder) and dementia praecox
(schizophrenia) provides a simple way for conceptualizing an often
complex clinical picture and has been extended to include a
categorical classification system utilized for a vast array of
psychiatric illnesses [1]. The validity of such a categorical classifi-
cation system has been challenged, as providing an unsatisfactory

model of mental illness [2,3,4,5]. In clinical practice, many
patients with psychiatric illness do not conform to a prototypical
diagnostic category. Findings emerging from many psychiatric
research areas and in particular psychiatric genetics are not
consistent with the traditional categorical model. For example,
family studies reveal notable familial co-aggregation between
schizophrenia and bipolar illness and between schizoaffective
disorders and both bipolar disorder and schizophrenia [6,7,8].
This points to the arbitrary nature of diagnostic boundaries that do
not reflect the underlying pathology. Further, linkage and
association studies demonstrate shared genetic susceptibility in
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schizophrenia and bipolar disorder. This has been shown through
systematic whole-genome linkage analyses that have identified
linkage to common chromosomal regions [6,7], as well as
candidate gene studies whose variants were shown to be associated
with both schizophrenia and bipolar disorder [6].
Additionally, the categorical diagnostic model does not

adequately accommodate atypical or sub-clinical cases[5]. For
example, cases with a mixture of psychotic and affective symptoms
are not clearly assigned to the categories of schizophrenia, bipolar
disorder or major depression in research into treatment and
pathogenesis. Patients with schizoaffective illness represent such
cases. Indeed, to date only a single genetic linkage study has been
conducted on such a common disorder, and the findings support
the potential existence of specific susceptibility loci to psychosis
with features of both schizophrenia and bipolar disorder [9].
Compelling evidence is also observed from association studies of
cases with a mixture of features from the categorical prototypes
that likely constitute distinct yet potentially more homogeneous
disease entities. Of note are two candidate disease gene studies.
The Neuregulin 1 gene was first reported in studies of
schizophrenia within the Icelandic population [10], which also
has a risk haplotype that was found to confer the greatest risk in
bipolar disorder with mood-incongruent psychotic features and
schizophrenia with mania. This haplotype was found to have little
effect in cases without both mania and mood-incongruent
psychotic features[11]. Also, variations in the D-amino acid
oxidase activator gene have been reported to potentially increase
susceptibility to episodes of mood disorders in patients suffering
from both bipolar disorder and schizophrenia[11].
The limitations of the existing categorical model with arbitrary

diagnostic boundaries and hierarchical diagnostic definitions that
do not allow for presence of the spectrum of sub-clinical symptoms
have impeded progress in psychiatric genetic research. An
alternative model is the suggestion that psychiatric disorders are
related as part of a continuum of psychosis [3]. A continuum
would represent patients with exclusively psychotic and affective
symptoms at the extreme ends of the spectrum and those with a
mixture of these symptoms (as with schizoaffective disorder)
intermediate along this spectrum. In this view, psychiatric
disorders represent the extreme variants of personality traits in
the general population with ‘‘normal’’ including those who do not
meet standards for a medically relevant diagnosis, though do
possess symptoms of these disorders [12]. As such, direct
examination of the individual’s behavioral symptoms without
regard to diagnostic category might be more informative for
determining the relationship of disease states in different patients
and the identification of genetic factors contributing to these
behavioral symptoms. The search for such genetic factors must be
conducted at multiple phenotypic levels to allow for the possibility
of both local effects (affecting a subset of patients) and global effects
(affecting the majority of patients with the disorder).
We present an analytical framework for detection of genetic

factors contributing to specific subsets of behavioral symptoms.
This approach is a paradigm shift from traditional genetic analytic
methods, where the genetic analyses are performed within given
pre-defined diagnostic categories. In contrast, in this approach,
individuals are grouped into a hierarchical network based on
shared behavioral symptoms without regard to the diagnostic
category to which they had originally been assigned. This form of
behavioral clustering is highly flexible allowing for both separation
and overlap of clinical symptoms within diagnostic categories.
Genetic linkage and association tests can then be preformed using
the individual groupings from clustering of individuals with an
observed set of symptom profiles. In this way, the genetic

determinants underlying a specific cluster of symptoms that define
a clinical sub-phenotype may be detected. This framework was
especially developed for analysis of data from genetic studies of
neuropsychiatric disorders with a wide spectrum of clinical
symptoms. With this in mind, we applied this method to analysis
of schizophrenia data, where we demonstrate the efficacy of this
approach in refining the findings from a previous schizophrenia
genome scan [13]. As a proof of principle, we also used a
published simulated dataset from the Genetic Analysis Workshop
14 [14] that was designed to model the genetic influences on a
complex psychiatric disorder.

Materials and Methods

Ethics Statement
The recruitment and diagnosis of patients and their family

members are described elsewhere [13]. In brief, this clinical cohort
was previously examined and published using the behavioral and
genetic data utilized in this study in a genome scan of
schizophrenia [13]. As described previously [13] subjects were
recruited from five geographic centers beginning in 1985: 213
families from the United States (based at Stony Brook, N.Y.), 50
from the United Kingdom (Oxford), 33 from Italy (Milan), 11
from Chile (Santiago), and two from Belgium (Leuven). Recruit-
ment included catchment area screening, recruitment by health
professionals at hospital and outpatient facilities, and advertise-
ment through organizations which support families of mentally ill
individuals. Written consent was obtained from all participants in
the study after receiving an explanation of the study procedures
and their implications. Consent was obtained using the same
procedures in all five countries, and each center was granted
approval with Single Project Assurance status by the Office of
Protection From Research Risks of the U.S. Department of Health
and Human Services. This study was conducted according to the
principles expressed in the Declaration of Helsinki. Individual
Institutional Review Board approval from the institutions to which
the authors are affiliated were not obtained as this was a reanalysis
of a previously published de-identified dataset.

Samples and Subjects
Simulated Data (GAW14). The GAW14 data was designed

to model the genetic influences on a complex psychiatric disorder
[14]. The made-up disorder termed Kofendred Personality
Disorder (KPD) could be subcategorized into three distinct
latent phenotypes denoted as P1, P2, and P3. These latent
phenotypes were in turn defined by 12 behavioral traits labeled a-
to-l. The genetic architecture of this disorder involves four disease
gene loci D1, D2, D3, and D4 (Figure 1A). The genes interact in
an epistatic fashion together with two modifier genes, D5 and D6
(Figure 1B). For the purposes of evaluating our methodology we
assumed that the latent phenotypes were unknown, instead all
analyses were based directly on the 12 behavioral traits.
In each population the families were ascertained based on the

following criterion assuming a family contains at least one latent
phenotype in order to be considered for inclusion in the study: for
the Aipotu population at least two family members must have
either P1, P2 or P3; for the Karangar population at least two
family members must have P2 or P3; for the Danacaa population
at least two family members must have P1. In this way, 100
families were ascertained from each population, constituting a
single replicate (Replicate #1 was used in this study). A total of
300 families were analyzed, consisting of 2,077 individuals of
which 781 were affected with KPD and 1,296 were unaffected. All
genotype data for the 10 simulated chromosomes were examined,
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with 416 microsatellite markers approximately 7.5 centimorgans
(cM) apart.

Real Data (Schizophrenia). Reviewing the findings from
the genome scan, we identified those chromosomes with
moderate to significant linkage evidence[13]. The schizophrenia
study included 1,779 subjects with probands and their relatives,
who were previously examined and assigned to one of the
following major diagnostic categories: schizophrenia, major
depression, depression not otherwise specified, schizoaffective
disorder, bipolar disorder, schizotypal personality disorder,
psychosis not otherwise specified, or unaffected according to
DSM-IV criteria [13] (with some individuals having been
assigned an unknown diagnosis). Families with at least two
members with diagnosis of schizophrenia were included in the
study. In addition, 178 behavioral symptoms, as part of a
Lifetime Symptom Checklist, were scored from the combined
structured interviews, family informant information and medical
records [15] across 1,779 individuals including both patients and
family members. From these 178 behavioral symptoms, 158 were
utilized in this study comprised of 154 dichotomous traits and
four traits with four states (absent and minimally, moderately and
severely affected). We then focused our efforts in analyzing these
chromosomes in an effort to identify subsets of behavioral
symptoms that may strengthen previous linkage findings, which
were strictly based on major clinical diagnoses. To this end, 91
microsatellite markers were identified for this analysis (39 markers
on chromosome 2, 30 markers on chromosome 10 and 22
markers on chromosome 22).

Algorithm for Behavioral and Genetic Network Analysis
The hierarchical behavioral network representing phenotypic

relatedness is obtained through the use of a character-based
analysis. This approach optimizes the change of behavioral traits,
where a change is defined by the loss (1R0) or gain (0R1) of the
presence of a behavioral trait as the network is traversed from one
individual to another[16]. This scoring system allows for the
separation of clinical symptoms within diagnostic categories and
for overlap between diagnostic categories. The structure of this
network is then utilized to create increasingly more inclusive or
nested sets of individuals based on phenotypic similarity each of
which is tested via traditional linkage and/or association analyses.
As such, the nesting of individuals based on the structure of the

behavioral network allows for the identification of genetic loci that
have both local and global influences on clusters of symptoms.
Each group of individuals, defined by the nesting group derived
from the behavioral network structure, is then considered as a
candidate behavioral endophenotype (or a candidate phenotypic
model) that is adopted for subsequent genetic linkage or
association testing. If significant evidence for linkage or association
is detected for a particular behavioral endophenotype, the
symptom profile of that group can then be examined to identify
those symptoms shared by the majority of individuals. Since the
behavioral network algorithm maximizes the traits that individuals
close to one another on the network share, the majority of
individuals in a group with significant linkage or association are
likely to all share one or more behavioral traits in common. In this
way, relationships between specific endophenotypes and genotypes
may be established.
The character-based algorithm described here, which generates

a behavioral network based on individual symptoms, accounts for
phenotypic heterogeneity. The goal is to identify genetically
meaningful phenotypic groups. Since an optimal arrangement of
shared behavioral symptoms was used to build the phenotypic
network, the symptoms defining a phenotypic group of interest can
easily be determined. As phenotypic groups are analyzed at
multiple, increasingly inclusive levels, genetic loci that show
linkage or association within small or large groups of individuals
with particular symptoms can be detected (denoted as local or
global affects respectively). This provides a direct means of
detecting genetic loci that can potentially modulate behavioral
symptoms.
Specifically, our algorithm consists of four distinct components

including (1) estimating a behavioral network, (2) nesting of the
behavioral network into inclusive groups/clades[17], (3) perform-
ing genetic analysis, and (4) evaluating statistical significance of
behavioral symptoms (see Figure 2 for an outline of the algorithm,
and Figure S1 for an example of network estimation). The
statistical evaluation of behavioral symptoms involves comparing
symptom distributions of individuals belonging to a given nested
group to the symptom distribution within the diagnostic category
to which they were assigned. To this end, we adopt a likelihood-
based approach to test for significant differences in the symptom
distributions in these groups. The likelihood ratio test is formulated
as follows,

Figure 1. Genetic model and analysis of the GAW14 dataset. (A) Graphical representation of the genetic model used in the GAW14
simulation. D1-to-D4 are the major disease-causing loci while D5 and D6 are modifier loci that influence disease penetrance if the disease genotype is
present. P1-to-P3 are latent phenotypes and a-to-l are sub-clinical phenotypes both caused by the disease loci, as seen by the connecting lines. The
letters ‘‘A’’ and ‘‘B’’ associated with the latent phenotype reflect identical phenotypes, which are caused by different underlying loci or acted upon by
modifier loci. (B) Graphical representation of the network showing relationships of behavioral phenotypes in the GAW14 dataset using a majority rule
consensus tree. There are three key groupings referred to as clades 0_21, 0_4, and 0_1, which define the phenotypic groups P1, P2 and P3, and the
unaffecteds respectively. The group shaded in blue, labeled 0_21 (P1), denotes the clade containing individuals who have the latent phenotype P1.
The group in red labeled 0_4 (P2+P3) is defined in a similar manner. Finally, the group in green labeled 0_1 represents the unaffected individuals. The
high level ratchet based tree search employed in the network generation procedure will not always resolve subtle differences within clades. Given
that half of the individuals in clade 0_4 share certain traits, additional analyses within this clade were conducted to further refine the latent
phenotypes. The clade 0_4 depicts the majority rule consensus tree resulting from a tree search within this clade. The expansion of clade 0_4
demonstrates the improved resolution of this clade as well as the separation of the latent phenotypes by the presence of trait b in P3 and the
absence of trait b in P2. Specifically, the clade labeled in yellow is defined by the absence of trait b defining phenotype P2 and the clade labeled in
blue have symptom b present defining phenotype P3. (C) A histogram plot for all sub-clinical traits present in the primary clades defined in part B.
The x-axis represents the traits, each with three bars for each clade, and the y-axis represents the proportions of individuals with the presence of the
trait. Within these clades, the proportions of individuals with each of the behavioral traits were examined and found to concur with the simulated
models relating the behavioral traits with the latent phenotypes. In clade 0_21, 100% of individuals in this group have the traits b, e, f, and h, which
define the P1 latent phenotype. The clade 0_4 is not as clearly resolved, where 100% of individuals share the behavioral traits c-to-h, but only fewer
than 50% possess the traits b and k. This is because clade 0_4 defines the latent phenotypes P2 and P3 that are separated by only one behavioral trait
(b) and share 6 traits in common (c-to-h). Finally, clade 0_1 contains most of the unaffected individuals not in clades 0_4 or 0_21 and is not defined by
any one specific or subset of behavioral trait(s).
doi:10.1371/journal.pone.0009714.g001
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L~{2 ln
L H0ð Þ
L HAð Þ~{2 ln

max
P1,P2

L p1, p2~p3~p4ð Þ

max
P1,P2,P3

L p1, p2, p3~p4ð Þ :

The likelihoods for the null and alternative hypotheses (H0

and HA respectively) are straightforward, where L H0ð Þ! p1ð Þx1
1{p1ð Þn1{x1 p2ð Þx2 1{p2ð Þn2{x2assuming p2= p3= p4 with cor-
responding maximum likelihood estimates of p̂p1~x1=n1;
p̂p2~ x2zx3zx4ð Þ= n2zn3zn4ð Þ. Similarly, L HAð Þ! p1ð Þx1
1{p1ð Þn1{x1 p2ð Þx2 1{p2ð Þn2{x2 1{p3ð Þn3{x3 assuming p3= p4
with corresponding maximum likelihood estimates of p̂p1~x1=n1;
p̂p2~x2=n2 ; p̂p3~ x3zx4ð Þ= n3zn4ð Þ. Note, xi is the number of
individuals with symptoms in group i and ni is the total number of
individuals in group i. Here p is the probability of the presence of a
behavioral trait for any of four possible groupings, such that p2 is the
probability of observing a given trait in the clinical diagnostic group
that does not overlap with the clade, and p3 is that trait’s probability
in the clade of interest that does not overlap with the major
diagnostic group. p4 is the probability of trait overlap between p2 and
p3, and p1 is the probability of the trait in individuals that are not in
any of the previously noted groups. The null hypothesis (H0) assumes

that the trait probability distribution for the individuals in the clade
and the clinically defined diagnostic group (as well as the overlap) are
the same (i.e., p2= p3= p4). Whereas, the alternative hypothesis (HA)
assumes that the probability of the trait is not the same (i.e.,
p2?p3= p4). For the boundary conditions where one group is
contained within the other, for HA p2 is compared to p4, while for H0

they are equal. The situation is similar in the case of no overlap
between categories where p2 and p3 would be the key parameters.
The likelihoods thus formulated are evaluated for each trait of
interest and assessed via the likelihood ratio test at the parameter’s
maximum likelihood estimates. Furthermore, for assessment of
statistical significance, empirical p-values were estimated using
10,000 permutations of the data.

Data Analysis
Generating a network from the behavioral symptoms of

individuals in the dataset involves examination of the entire ‘‘tree
space’’. This requires that all possible network configurations, which
group individuals with respect to their shared symptom profiles
must be enumerated and evaluated. This is not computationally
feasible. Instead we used a heuristic ratchet search algorithm that
has been developed for applications of exceptionally large datasets
[18]. The ratchet search algorithm assumes that there are islands of

Figure 2. Pipeline of Algorithm for Behavioral and Genetic Analysis. a Templeton, A. R., Boerwinkle, E., Sing, C. F. 1987. A cladistic analysis of
phenotypic associations with haplotypes inferred from restriction endonuclease mapping. I. Basic theory and an analysis of alcohol dehydrogenase
activity in Drosophila. Genetics 117(2):343–351. b Lipscomb DL. 1992. Parsimony, homology and the analysis of multistate characters. Cladistics (8):45–
65.
doi:10.1371/journal.pone.0009714.g002
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local optimality in the search space for the shortest network [19],
that is, a network with an arrangement of individuals and their
shared symptoms that minimize the number of character state
changes. However, such heuristic algorithms typically produce
multiple equally parsimonious trees. A solution to this problem is to
adopt a majority rule consensus tree, where a resolution among
individual nodes on the tree is arrived at if it is supported by the
majority of trees in the tree space. In this application, 51% is the
minimum allowable support. For this analysis, all parsimony based
ratchet searches were conducted using TNT v 1.0 [20]. All trees
were visualized and all symptoms were mapped onto trees using
MACCLADE v 4.08 [21]. To improve our tree resolution for a
specific clade, we performed a tree search using the SPR branch
swapping in PAUP v 4.0b10 [22].
The behavioral networks thus generated were examined and

nested groups/clades were identified for genetic analysis. Since the
datasets considered consist of family data, we performed genetic
linkage analysis using the program MILINK from the LINKAGE
software package [23,24]. Heterogeneity LOD scores (HLOD)
were computed based on an admixture likelihood model that
jointly tests for linkage and heterogeneity (i.e., the maximum
HLOD is compared with the log-likelihood under a null
hypothesis of ‘‘no linkage and no heterogeneity’’ rather than with
the maximum homogeneity LOD) [25,26]. Linkage analyses were
performed on those clades that were comprised of individuals from
at least 40 families. This clade constraint was applied, a priori,
before conducting the linkage analyses. This limited the number of
tests performed for small samples with potentially little power to
detect linkage. Of all nested groups considered, 6 clades met this
criteria in the simulated dataset and 39 clades in the schizophrenia
dataset. For each nested clade, LOD scores maximized over
multiple models were calculated with corresponding estimated
empirical p-values adjusting for the testing of multiple phenotypic
and genotypic models as well as multiple marker loci. LOD scores
were calculated under models of both homogeneity (LOD) and
heterogeneity (HLOD)[26]. Four genetic models were considered
including (1) a fully penetrant dominant model (Dom-1) and
disease allele frequency of 0.01, (2) fully penetrant recessive model
(Rec-1) and disease allele frequency of 0.09, (3) a dominant model
with 55% penetrance (Dom-2) and phenocopy rate of 0.0005, and
disease allele frequency of 0.01, and (4) a recessive model with
55% penetrance (Rec-2), phenocopy rate of 0.0005, and disease
allele frequency of 0.09. The first two models (Dom-1 and Rec-1),
though the simplest and perhaps overly optimistic, were chosen
because they provide the greatest power to detect linkage [27].
The latter two models (Dom-2 and Rec-2) were based on a
previously published analysis of this schizophrenia dataset[28]. In
the absence of any knowledge regarding the mode of inheritance
of the disease, as is typically the case for complex diseases,
application of a limited set of simple genetic models have been
shown to work well when testing for linkage [29].
To account for multiple testing, we estimated empirical p

values, allowing for multiple phenotypic and genetic models, as
well as multiple marker loci tested. To this end, we randomly
assigned genotypes to the founders within each family while
conditioning on the observed allele frequency and intermarker
distances in the data and then mating individuals within families
according to the pedigree structure using the program SIMU-
LATE [30]. In this way, 100 randomized replicates of the data
were generated. These replicates were used to estimate both the
model-based and the global empirical p-values. The model-based
p value (pM) is evaluated by recording the number of times a
maximum LOD score from a replicate exceeds the maximum
LOD score from that of the observed data, across all genetic

models within each clade (phenotypic model) and therefore
corrects for the testing of multiple genetic models and marker
loci tested for a particular phenotypic model. The global p value
(pG) is calculated by making comparisons to the maximum LOD
scores from randomized replicates across all genotypic and
phenotypic models (clades) and marker loci tested. This approach
accounts for multiple testing of all combinations of genetic-
phenotypic models as well as genetic markers tested.

Results

Simulated Data (GAW14)
Behavioral traits from all family members were analyzed to

generate a behavioral network. The network correctly grouped the
three latent phenotypes, as shown in Figure 1C. Within these
groups, referred to as clades, the proportions of individuals with
each of the behavioral traits were examined and found to concur
with the simulated models relating the behavioral traits with the
latent phenotypes (Figure 1C). Furthermore, genetic linkage
analysis of these key clades identified the major disease loci
contributing to KPD. In contrast to the findings observed from
conducting a traditional genome scan (where KPD is used as the
major diagnosis for defining affectedness), the observed linkage
signals from this analysis were more significant (with the exception
of one locus), and combinations of loci contributing to specific
latent phenotypes were identified (Table S2). This analysis
indicates that our algorithm is able to identify the genetic factors
underlying each of the latent phenotypes. Indeed, this degree of
resolution in detecting the contribution of genetic loci to specific
sub-phenotypes in a complex trait model is not attainable using
existing approaches.

Real Data (Schizophrenia)
Analysis of schizophrenia samples identified four distinct

behavioral groups (clades) with corresponding evidence for genetic
linkage. The salient clinical features of these groups were similar to
major depression and schizophrenia with two groups resembling
‘‘depression’’ (clades 6_4 and 4_28) and two ‘‘schizophrenia’’ (clades
6_6 and 6_1). These clades can be represented in a behavioral
network (Figure 3). In this network representation, the most
inclusive nesting level contains two clades (8_0 and 8_1) that
encompass the four clades noted above, where these clades
become smaller and less inclusive as the network is traversed from
left to right (Figure 3). In this way, individuals with shared
behavioral symptoms are grouped through successive nesting
levels, in that specific symptom(s) are shown to define specific
clades (Figure 3). The significance of these specific symptom
profiles was further evaluated (Figure 4). Those behavioral
symptoms that were observed in .70% of the individuals within
each clade were identified, and the relative proportion of these
symptoms were compared to the assigned diagnostic categories.
Specifically, those symptoms that occur in a significantly greater
number of individuals in the clade under consideration were
compared to the diagnostic category (of e.g., depression or
schizophrenia) to which the majority of the individuals in the
clade were assigned. In this way, statistically significant symptom
profiles were identified that characterize each clade (Figure 4).
The depression group depression6_4 is characterized by the

symptom ‘‘difficulty concentrating’’ (Figure 4), since the majority
of individuals belonging to this clade share this symptom. In
contrast, the second clade, depression4_28 is characterized by a
spectrum of symptoms, that include ‘‘trouble getting to sleep’’,
‘‘trouble staying asleep’’ and ‘‘early morning wakening’’, and
‘‘severely poor adaptation to school with poor scholastic perfor-
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mance’’. Such symptoms appear in significantly greater proportions
of individuals in these clades than those with the assigned diagnosis
of major depression (Figure 4). Further, these individuals belong to
mutually exclusive groups accounting for 83 of the 139 patients with
major depression in the total dataset (Table 1), identifying two
depression sub-phenotypes with distinct symptom profiles.
Linkage analysis of these depression clades provided significant

evidence for linkage on chromosome 2 (Table 1). Individuals with
behavioral symptoms in each of the depression groups were
designated as affected and their family members who did not share
these defining symptoms were designated as unaffected for
consideration in the linkage analyses. We observed significant
linkage signal for the depression6_4 clade with loss of concentration
as the defining symptom on chromosome 2q35 (heterogeneity
LOD score HLOD=4.07 at marker D2S2248). We also observed
suggestive evidence for linkage on 2q13 for the second
depression4_28 clade (HLOD of 2.86), where the dominating
symptoms were those of sleep disturbances. Comparatively,
analysis of families in the total dataset using the diagnosis of
major depression to define affectedness yielded lower linkage
signals. In fact, the maximal linkage signal overlapped with the
same chromosomal region identified by the depression4_28 clade,
with a lower score (HLOD=2.6 with ’alpha= 1 at marker
D2S160; Figure S2). The next highest linkage signal was 5
centiMorgans (cM) away from our strongest finding with the
depression6_4 clade with a substantially lower LOD score
(HLOD=2.1 and alpha= 0.45 at marker D2S126; Figure S2).
Taken together, these results may indicate the presence of two
distinct candidate loci influencing the symptoms defining these two
groups, since the clades contain two mutually exclusive groups of
individuals with potentially stronger, more homogeneous signal
resulting from such refinement of phenotypes.
The schizophrenia groups also revealed intriguing symptom

profiles. The schizophrenia6_6 clade was characterized by language
disorder symptoms such as circumstantial speech and excess
details, and aggressive and violent tendencies (Figure 4). The

schizophrenia6_1 clade was composed mainly of individuals with the
major diagnoses of schizophrenia or schizoaffective disorder with
symptoms including loss of concentration, pressure of speech, low
mood, suicidal ideation and psychomotor retardation (Figure 4).
Individuals belonging to this clade have symptoms more
characteristic of those with the diagnosis of schizoaffective disorder
even though the majority of these individuals had the diagnosis of
schizophrenia (56% schizophrenia vs. 32% schizoaffective). This
group is enriched with language disorder and hallucination
symptoms resembling schizophrenia and depressive symptoms
resembling schizoaffective disorder. This is a clear demonstration
of the overlap between and difficulty in separating these two so
called clinically distinct diagnostic categories.
Linkage analysis of these schizophrenia clades provided

suggestive evidence for linkage (Table 1). We observed a novel
linkage finding with schizophrenia6_6 clade on chromosome 2p25
(HLOD of 2.19 and alpha = 0.66 proximal to marker D2S168).
This linkage peak is approximately 66 cM from the peak LOD
score of 2.99 reported previously [13] from linkage analysis of the
same samples with the diagnosis of schizophrenia or schizoaffec-
tive disorder. Linkage analysis with the schizophrenia only
diagnosis resulted in substantial improvement of the LOD score
rising to 5.13 in the same region when only those with
schizophrenia were considered as affected [31]. The analysis of
the schizophrenia6_1 clade yielded maximal linkage signal on
chromosome 2p21 (HLOD of 2.42 and alpha = 1 at marker
D2S2298; no evidence for linkage was observed at this locus in the
comparative analysis with diagnosis of schizophrenia or schizoaf-
fective disorder for affectedness (Table 1). These findings are
unique to each schizophrenia clade with a relative distance of
19 cM between the most significant loci from each clade,
underscoring our ability to detect potential linkage to distinct
genetic regions due to the refinement in the phenotypic definitions.
Finally and most importantly, the present study also illustrates

that behavioral symptoms follow a continuum of psychosis and
extend into normal personality traits. This is best illustrated by clade

Figure 3. Nested structure of the network showing only the five clades that exhibit significant findings from the schizophrenia
dataset. From left to right are the most to least inclusive nesting levels. The most inclusive nesting level, 8, divides the tree into three parts, clades
8_0, 8_1 and 8_2. The five clades found to have suggestive to significant linkage (4_28, 5_15, 6_1, 6_4, 6_6) are shaded with colors that are
consistently used to represent them in the text. More inclusive nesting levels that encompass these five clades are also shown; however, nesting
levels below level 8 that have no significant linkage findings are not shown. Clades with individuals who have a greater proportion of affective
symptoms are grouped more closely together (4_28, 6_4). The clade with a greater proportion of positive symptoms typical of schizophrenia is
grouped by itself (6_6), while the clade with both affective and positive symptoms is grouped between the two (6_1), and the clade with individuals
with minimal symptoms is grouped by itself (5_15).
doi:10.1371/journal.pone.0009714.g003
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5_15, which has no defining symptom profile and encompasses a
collection of individuals from many diagnostic categories with the
largest represented group being the unaffecteds. Many of these
individuals have very few symptoms, which is why they cluster more
closely with the unaffected individuals. However, closer examina-
tion of their symptom distribution revealed that approximately 57%
of all individuals carry at least one symptom of a personality
disorder (data not shown), including paranoid, schizoid, schizotypal
and borderline traits (with significant evidence for linkage, HLOD
of 3.4 proximal to D2S391 approximately 4 cM from the peak
LOD in schizophrenia6_1 clade see Table S1). This result captures
the notion of a continuum of psychosis. As expected, unaffected
family members of the mentally ill often share some symptoms with
their affected family members.

Discussion

In this study, we have developed an analytical framework for the
characterization of behavioral symptoms with shared genetic

contribution. This method is a departure from the traditional
approaches to analysis of neuropsychiatric disorders in that it does
not rely on a priori assignment of individuals to specific diagnostic
categories. We have demonstrated the effectiveness of this
approach in identifying the genetic factors involved in the etiology
of complex phenotypic models using simulated data. Application
of this method to our schizophrenia data revealed groupings of
patients whose characteristic symptoms are novel with potential
involvement of gene(s) contributing to these symptoms. With this
method, we further refined previous linkage findings in this
dataset, providing improvements in the linkage results by limiting
potential phenotypic heterogeneity. Analysis of individuals with
shared behavioral symptoms is a powerful and straightforward
approach to identify the genetic factors underlying such symptom
profiles and will lead to discovery of endophenotypes that are likely
to be more biologically meaningful than standard diagnostic
categories.
Our results clearly demonstrate the separation of individuals

with major depression on the basis of whether they exhibit sleep

Figure 4. The spectrum of behavioral symptoms defining the depression and schizophrenia clades. Symptoms present in greater than
70% of individuals with the diagnosis of depression, schizophrenia, or schizoaffective disorder are depicted as filled-in circles with depression (in
blue), schizophrenia (in purple) and schizoaffective (in gray). Significant differences in symptom distributions within clades compared to the
diagnostic categories of depression (Dep), schizophrenia (Schiz), and schizoaffective (Schizaf) are depicted with a ‘‘*’’ (with statistical significance
reported at the 0.05 level). Unfilled circles with a ‘‘*’’ imply statistically significant differences between the clade and diagnostic category but that less
than 70% of individuals in that clade have that symptom. Boxes which encompass the circles in the three columns of depression, schizophrenia and
schizoaffective disorder are shaded when that symptom appears in greater than 70% of the individuals in that diagnostic category. Five symptoms
distinguish the depression4_28 clade from the diagnostic category of depression, which include trouble getting to sleep, trouble staying asleep, early
morning awakening, severe impairment in both childhood and adolescent adaptation to school. The depression6_4 clade is distinguished by one
symptom, mainly difficulty concentrating. These depression clades are mutually exclusive. Further, language disorder symptoms distinguish the
schizophrenia6_6 clade from the diagnostic category schizophrenia (i.e., circumstantial speech and excess details) as well as an increased incidence of
violence and aggression. The schizophrenia6_1 clade is distinguished from both diagnostic categories schizophrenia and schizoaffective disorder by
three symptoms, including thoughts inserted into one’s head that are not one’s own, thoughts stopping or withdrawn, and thoughts being read by
others. However, this clade shares behavioral symptoms characteristic of both of these diagnostic categories.
doi:10.1371/journal.pone.0009714.g004

Table 1. Diagnostic and LOD score statistics for clades.

Depression6__4 Depression4__28 Schizophrenia6__6 Schizophrenia6__1

schizophrenia 4 0 56 56

schizoaffective 9 0 2 32

major depression 40 43 0 0

depression NOS 9 5 1 0

bipolar 11 0 0 2

schizotypal PD 4 3 1 0

psychosis NOS 0 1 2 2

normal 6 5 0 0

unknown 17 7 7 8

number families 64 46 52 77

number individuals 100 64 69 100

Zmax (a) 4.07 (0.86) 2.86 (0.50) 2.19 (1) 2.42 (0.68)

PM #0.01 0.02 0.06 0.02

PG 0.08 0.6 0.79 0.94

marker D2S2248 D2S160 D2S168 D2S2298

model Rec-1 Rec-1 Dom-2 Rec-2

For the four significant depression and schizophrenia clades, the number of individuals from each diagnostic group that are present in each clade and corresponding
LOD scores are reported. The clades are separated into two groups, consisting of individuals with symptoms typical of depression and those with individuals with
symptoms typical of schizophrenia. The maximum LOD score is reported for each clade, maximized over all genetic models and analysis schemes examined. The term
HLOD denotes the maximum heterogeneity LOD score and a is the corresponding heterogeneity parameter. Model refers to the genetic model as described in the text.
PM and PG are the estimated model-based and global empirical p values respectively.
doi:10.1371/journal.pone.0009714.t001
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disturbance symptoms. These physiological symptoms may
distinguish the etiological factors for the disorder in each group.
Further, the separation of the two linkage peaks for major
depression on chromosome 2 based on two primary behavioral
symptoms (i.e., sleep disturbances and difficulty concentrating)
may indicate the identification of two groups of patients whose
symptoms have two distinctly different genetic origins. The
individuals in the group suffering from sleep disturbances appear
to have more severe symptoms during childhood, indicating a
possible prodrome or an earlier age of onset. This increases the
likelihood that these symptoms may have high genetic loading,
consistent with epidemiological studies, suggesting a strong
correlation between the diagnosis of depression and sleep
disturbances [32,33,34]. The second depression group is com-
prised of individuals that have difficulty concentrating, confirming
previous findings [35,36,37]. This group provided the strongest
linkage evidence in our study, where the linkage signal spans the
genomic region containing the gene cAMP responsive element
binding protein 1 (CREB1) which has been implicated as a
candidate gene for depression [38,39].
The most striking schizophrenia finding involved the group of

individuals with language disorders, considered central to the
symptom pathology of schizophrenia [40,41]. It has been
suggested that these symptoms are related to cognitive deficits in
schizophrenia [42]. We observed one group with over 95% of
individuals defined by specific symptoms of language disorders,
such as circumstantial speech and excess details. These could
represent a core set of symptoms for a specific subtype of
schizophrenia with a distinct genetic pathway that might be
targeted with specific pharmacological and cognitive treatments.
While there have been numerous studies reporting linkage to
schizophrenia on chromosome 2 [31,43,44,45,46,47,48,49,50]
none have specifically reported linkage at the sites identified in
the analysis of our two subgroups of schizophrenia patients at
chromosomal regions 2p25.1 and 2p21. The region 2p25.1
contains the gene neurotensin receptor 2, which has an important
physiological role in sensory perception [51]. Additionally, the
region 2p21 contains the gene protein kinase C epsilon, which has
been shown to be involved in neuronal channel activation and
may be involved in emotional learning and memory [52]. These
results demonstrate the efficacy of our approach, however they are
subject to replication in future studies using the wealth of genetic
and behavioral data collected in other linkage and association
studies.
While we grouped individuals based primarily on shared

behavioral symptoms, it is also possible to include physiological
trait measurements, as well as non-genetic or environmental
factors. In future analyses, the relative importance of traits can be
weighted when building the network based on the heritability of
the trait. Traits with high heritability would contribute more to the
structure of the network defining phenotypic relationships. The
analytical procedure is also easily extendable to association studies
using a case-control study design by simply performing association
tests on phenotypic groups instead of linkage analyses. This
method is ideally suited for application to diseases where clinical
heterogeneity of phenotypes is suspected and multiple symptoms
are recorded for study subjects, as is typically the case for most
neuropsychiatric disorders.
Our study shows that reconsideration and refinement of

phenotypic definitions will reveal a myriad of new phenotypic
and genotypic relationships. Although the representation of
behavioral symptoms among individuals is not likely to be
hierarchical, with some genes affecting multiple symptoms and
multiple genes having an effect on an individual symptom, our

method aims to generate hypotheses regarding specific subgroups
of individuals with shared symptoms and to delineate the genetic
basis of such behavioral symptoms. In this way, individuals with
shared symptom profiles will be grouped together and genes with
effects on these symptoms will be detected, generating novel
phenotype-genotype relationships.

Supporting Information

Figure S1 Simplified example of a network representing
relationships between patient’s behavioral phenotypes. This shows
how behavioral symptoms of individuals in the dataset are used to
group patients together into a hierarchical network. (A) Depiction
of eight patients each scored for the presence (1) or absence (0) of
ten behavioral symptoms. (B) Network representing the grouping
of patients based on phenotypic relatedness. Patients who share
more behavioral symptoms in common are grouped together,
where the closest neighbors in a network are binned together into
a more inclusive group (referred to as nesting level).
Found at: doi:10.1371/journal.pone.0009714.s001 (8.21 MB TIF)

Figure S2 Depression LOD score plots. This demonstrates the
separation and amplification of linkage peaks in the two mutually
exclusive depression groups as compared to the overall diagnoses
of depression. The LOD score peak at approximately 122 cM
circled for the depression diagnoses (panel A) is significantly
amplified in the depression4_28 clade (panel B), which also lacks a
LOD score peak at ,218 cM position. In contrast, the
depression6_4 clade shows amplification of the peak at
,218 cM (panel C), corresponding to the second peak for the
depression diagnoses (panel A). Interestingly, the depression6_4
clade lacks the peak at approximately 122 cM, present in the
depression4_28 clade (panels B and C). These two depression
clades are mutually exclusive, indicating a potential separation of
two genetically distinct groups of individuals within the diagnostic
category major depression who can be distinguished phenotypi-
cally by the presence/absence of sleep disturbance symptoms.
Found at: doi:10.1371/journal.pone.0009714.s002 (9.47 MB TIF)

Table S1 Diagnostic and LOD score statistics for clade 5_15.
For this clade, the number of individuals carrying each diagnosis is
provided as well as the number of individuals and families and the
relevant linkage statistics. The maximum LOD score is reported
maximized over all genetic models and analysis schemes examined
with corresponding model parameters. The term HLOD denotes
the maximum heterogeneity LOD score and a is the correspond-
ing heterogeneity parameter. Marker refers to the genetic marker
with the observed maximum HLOD. Model refers to the genetic
model as described in the text. PM and PG are the estimated
model-based and global empirical p-values respectively.
Found at: doi:10.1371/journal.pone.0009714.s003 (0.04 MB
DOC)

Table S2 Linkage Results of Simulated GAW14 Data. Clade
refers to the clades under consideration, Phenotype refers to the
latent phenotypes, HLOD is the maximum heterogeneity LOD
score and a is the heterogeneity parameter, Model refers to the
genetic model as described in the text, and PM and PG are the
estimated model-based and global empirical p-values respectively.
Chromosome is the chromosome on which this peak occurs,
position is the position on the chromosome at which the peak
occurs in cM, and disease locus is the disease locus that it
identifies. Details of the genetic models and analyses as well as the
empirical p-value estimations are given in main text. (A) Linkage
analysis of the clade (0_21) containing the latent phenotype P1
showed strong linkage to the disease gene D1 on chromosome 1,
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which together with D2 define the underlying genetic contribution
for P1. Analysis of clade 0_4 also revealed significant evidence for
linkage with the disease genes D3 and D4 contributing to the
latent phenotypes P2 and P3. However, the disease locus D2 was
not detected in linkage analysis of these clades, which included
individuals who harbored the latent phenotypes of interest. This is
likely due to the fact that the latent phenotypes P2 and P3 are
caused by alternate epistatic interactions between the disease loci
D2 and D3, where for P2 the disease loci D2 has a recessive mode
of inheritance and D3 has a dominant mode of inheritance, and in
contrast for P3 the disease loci D2 has a dominant mode of
inheritance and D3 has a recessive mode of inheritance. As for the
linkage analysis there was no resolution between the phenotypic
groups P2 and P3. Thus, they were analyzed with these opposite
modes of inheritance which coupled with the reduced sample size
resulting from subdividing this group reduced the potential genetic
signal for the disease loci D2. Interestingly, D2 was correctly
localized when the clade containing the majority of the unaffecteds
was examined. The disease locus D2 is the genetic determinant for
traits e, f and h in unaffected individuals, which acts in a dominant
manner with a penetrance of approximately 20%. (B) Whole-
genome scan analysis on the entire dataset using Kofendred
Personality Disorder as the major diagnosis (i.e., used to define
affectedness status). All the major disease loci were also identified
in this analysis, yet with less significant linkage signals. The

exception was locus D2 which had a more significant HLOD score
in this genome scan. (C) The two clades separated by the presence
(P3) or absence (P2) of trait b were examined via linkage analysis,
and loci D1, D2 and D4 were successfully isolated within the
separated phenotypic groups P2 and P3.
Found at: doi:10.1371/journal.pone.0009714.s004 (0.05 MB
DOC)
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