Coquillettia is related to Systellonotus by the general body form and structure of the vesica. The carinate gula found in the males of all Coquillettia group genera is not present in Systellonotus, although it does occur in both sexes of Mimocoris and at least in the males of Carinogulus. Systellonotus does not have the greatly enlarged pulvilli of this group, although at least in S. triguttatus they are distinctly larger than in most hallolepine genera.

Coquillettia is the least specialized of the three genera in the group. Orectoderus and Teleorhinus have diverged greatly from Coquillettia, losing the hemelytral fascia (in most species), having the pulvilli fused to the ventral surface of the claws (free in Coquillettia), having the pronotal collar greatly modified, and in Teleorhinus having a strongly clavate second antennal segment.

Based on morphological and distributional evidence it seems reasonable to assume that the ancestor of this group was similar to Systellonotus in many respects and that it invaded North America from the Palearctic. The genera belonging to the Coquillettia group are widely distributed in North America, but show their greatest diversity in the Western mountains. Van Duzee (1921) described Coquillettia uhleri from Pasadena, California. This species was incorrectly recorded from "Austria; n.m. Europe" by Carvalho (1958a).

ZOOGEOGRAPHY: The distribution of the Hallolepini as portrayed by the Carvalho Catalogue is cosmopolitan, with the greatest diversity in the Palearctic and Ethiopian Regions. I have excluded the genera Amazonocoris Carvalho, Closterocoris Uhler, Glossopeltis Reuter, Hallolepoides Carvalho, Heidemanniella Poppius, Nicostratus Distant, and Tyloptelis Reuter, which were included in the Hallolepini by Carvalho (1958a), and moved them to other subfamilies. The tribe is thus predominantly Old World, with only two very limited groups occurring in the Nearctic, and is totally absent from the Neotropics. The Hallolepini are most diverse in Africa and the Palearctic (Figure 351a) and the faunas of these two areas are very closely related.

Hallolepines are distinctive for their extensive adaptation to relatively dry areas of the Old World. This is exemplified by the large number of genera in the Mediterranean and Africa. At present the only genera known from Southeast Asia and Australia are Hallolepus, Azizus, and Acrorrhinium. In these regions the Leucophoropterini and Pilophorini are most abundant and probably replace the Hallolepini ecologically.
DISCUSSION OF INDIVIDUAL GENERA.

Acrorrhinium Noualhier, 1895, see page 66.

Aeolocoris Reuter, 1903, see page 121 and discussion under Aeolocoris group.

Alloeomimus Reuter, 1910b.

The male genitalia (as illustrated by Hoberlandt, 1953, for Alloeomimus kurdus), parempodia, pronotal collar, and facies confirm the placement of this genus in the Hallodapini. Two species are known from the Mediterranean.

* Amazonocoris Carvalho, 1952c, see genera incertae sedis.

* Anapsallus Odhiambo, 1959c, see Phylini.

Aspidacanthus Reuter, 1901.

The structure of the head and pronotum, hemelytral coloration, and general facies place this genus in the Hallodapini. The scutellar spine shows a very close relationship to Myombea. Two species are known from Senegal and Turkestan.

Azizus Distant, 1910a, see page 80.

Bibundiella Poppius, 1914a.

I have not examined specimens of this genus, but based on the original description, it belongs to the Hallodapini. The type specimen of Bibundiella obscura Poppius, is in the Helsinki Museum (personal communication, Martin Meinander, Helsinki Museum), although Poppius’ (1914a) original description indicates that it was deposited in the Berlin-Humboldt Museum.

Boopidella Reuter, 1907b, see page 121.

Carinogulus Schuh, new genus, see page 81.

Chaetocapsus Poppius, 1914a.

I have not examined Chaetocapsus binotatus Poppius, the type species of the genus, but the original description indicates that it belongs to the Hallodapini. The holotype of C. binotatus is in the Helsinki Museum (personal communication, Martin Meinander, Helsinki Museum), although Poppius (1914a) indicated that it was deposited in the Berlin-Humboldt Museum.

* Closterocoris Uhler, 1890, Mirinae, see misplaced genera.

Coquillettia Uhler, 1890, see discussion under Coquillettia group.
Cremnocephalus Fieber, 1860, see discussion under Cremnocephalus group.

Cyrtopeltocoris Reuter, 1876a.

Reuter (1910a) placed Cyrtopeltocoris in the Cremnocephalaria and was followed by Van Duzee (1917) who placed the genus in the Halloapini (Cremnocephalaria = Hallodapini); Knight (1968) later placed it in the Pilophorini, the position given the genus by Carvalho (1952a; 1958b). Kelton (1959b) noted that the male genitalia are of the phyline-type. The parempodia, which are weakly fleshy and slightly convergent apically, have created confusion as to proper tribal placement. The male and female genitalia, the flattened pronotal collar, the white transverse fascia on the hemelytra, and the general body form all confirm placement in the Hallodapini (see also discussion under Systellonotus group). At least 13 species are presently placed in Cyrtopeltocoris, most from the Southwestern United States (see Knight, 1968).

Diocoris Kirkaldy, 1902c, see page 122.

Described from brachypterous specimens, and placed in the Halloapini by Lindberg (1958), Eremachrus is extremely closely related to Hallodapus. Only a single species is known from the Cape Verde Islands.

* Eucerella Poppius, 1921, see Orthotylini.

Formicopsella Poppius, 1914a, see page 89.

Glaphyrocoris Reuter, 1903, see page 84.

* Glossopeltis Reuter, 1903, Deraeocorinae, see misplaced genera.

* Halloapoides Carvalho, 1951a, see Orthotylini.

Hallodapus Fieber, 1858, see page 91.

* Heidemanniella Poppius, 1914c, Mirinae, see misplaced genera.

Hypomimus Lindberg, 1940, see discussion under Carinogulus, page 84.

Kapoetius belongs to the Aeolocoris group. One species is known from the Sudan.
Laemocoris Reuter, 1879, see page 103.

* Lissocapsus Bergroth, 1903, see genera incertae sedis.

* Makakix Odhiambo, 1967, Deraecorinae, see misplaced genera.

Malgacheocoris Carvalho, 1952b.

Malgacheocoris is probably most closely related to Formicopsella and Myombea from Africa. Only a single species is known from Madagascar.

Marmorodapus was described with a single included species, M. spinulatus Schmitz. Unfortunately, by what must have been an inadvertent error, no locality data or holotype designation was included with the original description. The genus is from Africa (Congo?) and belongs to the Aeolocoris group.

Mimocapsus Wagner, 1953.

Mimocapsus may be closely related to Systellonotus. One species is known from Egypt.

Mimocoris Scott, 1872.

See discussion under Systellonotus group. Two species are described from southern Europe and the Mediterranean. A third species, Mimocoris scotti Berg, from Argentina, is almost certainly placed in the wrong genus and subfamily.

Myombea China and Carvalho, 1951, see page 104.

Myrmicomimus Reuter, 1881, see discussion under Cremnocephalus group.

* Myrmicopsella Poppius, 1914a, see Leucophoropterini.

* Nicostratus Distant, 1904a, Deraecorinae, see misplaced genera.

Omphalonotus Reuter, 1876b.

Omphalonotus is probably most closely related to Hallodapus and allied genera. Two species are known from Europe and North Africa.

Orectoderus Uhler, 1876, see discussion under Coquillettia group.

Pangania Poppius, 1914a, see page 104.

This genus is most closely related to Laemocoris and Hallodapus. Three species are known from the Middle East.
Ribautocapsus Wagner, 1962, p. 83.

This genus is most closely allied to Laemocoris and Hallodapus. One species is known from Spain and Algeria.

Sohenus Distant, 1910a.

Sohenus appears to be very closely related to Formicopsella, from Africa, by the structure of the head, pronotum, and hemelytra, and also the color pattern. Further study may reveal that the two are synonymous. The male genitalia of S. uvarovi Ballard are typical of the Hallodapini, the vesica being long, with several bends, and having a well developed subapical gonopore. Two species are known from India.

Syngonus Bergroth, 1926.

Originally described under the preoccupied name Bibundia (Poppius 1914a), this genus was renamed by Bergroth (1926). Poppius (1914a) stated that the holotype of Syngonus nigra (Poppius), the only described species in the genus, was deposited in the Berlin-Humboldt Museum. In fact it is in the Helsinki Museum (Type No. 11958). Syngonus is probably most closely related to Acorrhinimum and Trichophorella. It is peculiar in the Hallodapini in being black. An undescribed species from Ghana has a very broad white fascia medially on the hemelytra, whereas nigra has only a faint light marking on the corium. The former condition is not found in other members of the Acorrhinimum group. The head is missing from the holotype of S. nigra, from Cameroon.

Systellonotidea Poppius, 1914a, see Diocoris Kirkaldy, page 122.

Systellonotus Fieber, 1858, see page 112.

Teleorhinus Uhler, 1890, see discussion under Coquillettia group.

Trichophorella Reuter, 1905b, see page 114.

Trichophthalmocapsus Poppius, 1914a, see page 117.

* Tylopeltis Reuter, 1904, Deraeocorinae, see misplaced genera.

LEUCOPHOROPTERINI, NEW TRIBE

DIAGNOSIS: Usually ant mimetic; generally dark, often with contrasting light hemelytral maculae; head usually concave behind, eyes usually contiguous with anterior margin of pronotum; head sometimes convex behind, eyes well removed from pronotum; genae occasionally extremely hairy; pronotum usually with finely carinate
upturned anterior margin or with more or less well developed flattened collar; pronotum slightly to strongly constricted anteriorly or rarely constricted medially (hour glass shaped); scutellum always flat; hemelytra straight or weakly or strongly sinuate laterally; abdomen narrow; parempodia usually hair-like, parallel, very seldom fleshy, rod-like, and weakly convergent apically; pulvilli always minute; vesica occasionally U-shaped, weakly twisted (Figure 200), usually S-shaped, strongly twisted; male gonopore undeveloped, poorly developed, or rarely well developed; left clasper always wedge-shaped, trough-like; right clasper flat, leaf-like; posterior wall simple, posterior margin not evaginated.

Note: Many genera in the Leucophoropterini are undescribed and therefore cannot be given names in the following discussion.

Discussion: Many genera in the Leucophoropterini are superficially very similar to members of the Hallodapini and Pilophorini. Fortunately, a distinct evolutionary sequence can be traced in the Leucophoropterini, for if this were not possible, at least some of the genera would be placed in the other two tribes. Two of the most primitive genera in this tribe (Leucophoroptera and Karoocapsus) have well developed light hemelytral maculae. The anterior margin of the pronotum in these genera is finely carinate and upturned and the head is concave behind, resembling structurally the situation found in the Pilophorini. Tythus, which also appears to be relatively primitive, usually has a dark head and pronotum and light hemelytra; the head is convex behind and the anterior margin of the pronotum is similar to that of Leucophoroptera. Most of the derived members of the tribe have rather poorly developed hemelytral maculae and have the head and prontum variously modified from the structure found in Leucophoroptera and Karoocapsus (see discussion below).

The male genitalia of the Leucophoropterini are distinct from those of the Hallodapini, Phylini, and Pilophorini, although the differences are often small and difficult to categorize. The gonopore is either apical and not developed (Karoocapsus and Tythus) or subapical and poorly developed. In an undescribed genus from the Philippines, the gonopore is very well developed, but this is almost certainly a convergence toward the form found in most Hallodapini, because all other characters of this genus agree closely with the Leucophoropterini. In Karoocapsus and Tythus the vesica is U-shaped and only very slightly twisted, resembling the form found in the Pilophorini and emphasizing the plesiomorphic character of these genera. In all other genera the vesica is distinctly twisted
and S-shaped. The male genitalia are small relative to the total body size. In contrast to the Leucophoropterini, the Hallodapini almost always have a well developed subapical gonopore (exceptions include *Coquillettia*), a strongly twisted S-shaped or more elaborately bent vesica and genitalia that are relatively large in comparison to the total size of the insect. The female genitalia of the Leucophoropterini show only very minor differences from those of the Hallodapini and Phylini, and differ from those of the Pilophorini in not having the evaginated posterior margin of the posterior wall.

Two lines of evolution toward effective ant mimicry can be recognized in the Leucophoropterini. One involves the development of a head-pronotum combination similar to that found in *Formicopsella* in the Hallodapini. In this line there is a definite transition from the type of head and anterior pronotal margin found in *Karoocapsus* and *Leucophoroptera* to an anteriorly constricted pronotum with a flat collar and head "necked" behind the eyes (genera of this type are as yet undescribed). The other line of evolution involves accentuation of the head which is concave behind, again as in *Karoocapsus*, and at the same time specialization of the pronotum to conform to the outline of the posterior margin of the head. At its highest degree of specialization the pronotum is constricted medially into an hourglass shape; this type has also evolved independently in the Pilophorini (genera in neither tribe are as yet described, however).

Two convergences, in addition to those mentioned above, occur between the Leucophoropterini and other phyline tribes. In certain undescribed genera the gena is "carinate", forming a broad ridge below the eye. In frontal view this resembles the outline of mandibles, and its most advanced condition, includes the buccula as the apex of the mandible. A similar development occurs in at least one undescribed species of pilophorine, related to *Pilophorus*, from the Philippines. In another undescribed genus of Leucophoropterini from the Philippines the parempodia are fleshy, rod-like, and weakly convergent apically, a condition very similar to that found in some Phylini and Hallodapini.

Zoogeography: Two of the most primitive genera in the Leucophoropterini, *Karoocapsus* and *Leucophoroptera*, occur in South Africa and Australia (and New Guinea) respectively. The more derived genera are found in New Guinea, New Ireland, the Solomon Islands, Borneo, and the Philippine Islands. Therefore the group probably evolved in temperate and subtropical areas of Australia (and South Africa) and subsequently spread to nearby tropical islands and became more highly specialized there. The paucity of
leucophoropterine genera in Africa (Figure 351b) suggest that either *Karoocapsus* is a relict or that the environmental conditions in tropical Africa were unsuitable for the evolution of the group. Also, competition from the Hallodapini may have been important in limiting the evolution of the Leucophoropterini in Africa. *Tytthus* appears to be in a somewhat distinct evolutionary position in the tribe. It is nonmimetic, has the head convex behind, and is cosmopolitan.

Discussion of Individual Genera.

Bilirania Carvalho, 1956a, pp. 215–216.

Bilirania myrmecoides Carvalho, from the Philippines, was placed in the Pilophorini and related to *Leucophoroptera* by its author. Carvalho (1956a) did not illustrate the male genitalia, but the facies of *Bilirania* indicate that it probably belongs to the Leucophoropterini. The complex distribution of the Leucophoropterini and the Pilophorini in Southeast Asia and the great external similarity of the two groups makes it necessary to only tentatively assign *Bilirania* to the Leucophoropterini, until specimens can be examined and the male genitalia dissected.

Karoocapsus Schuh, see page 123.

Leucophoroptera Poppius, 1921.

Leucophoroptera was originally described from New South Wales, Australia, and New Guinea. I have examined an undescribed species from Queensland, Australia, in which the male genitalia are similar to those of *Karoocapsus*, but the vesica is more strongly S-shaped. The female genitalia of *L. quadrimaculatus* have a posterior wall consisting of a simple sclerotized plate.

Poppius (1921) described *L. quadrimaculatus*, the type species of the genus, from specimens from New South Wales, Australia, and New Guinea ("Ins. Deslacs"). I have examined a female from the Helsinki Museum from the latter locality. The other specimens are apparently in the Hungarian Museum and they must be studied before a lectotype can be designated.

Myrmicopsella Poppius, 1914a.

The holotype female of *Myrmicopsella nitidipenne* Poppius from Tananarive, Madagascar, is the only known representative of the genus. It almost certainly belongs to the Leucophoropterini, and is probably most closely related to *Karoocapsus*. Poppius (1914a) noted that this specimen was deposited in the Paris Museum, but in fact, it is in the Helsinki Museum (Type No. 7788).
Tytthus Fieber, 1864, see page 135.

TRIBE PHYLINI

DIAGNOSIS: Facies, coloration, and vestiture variable, never mimetic; females occasionally brachypterous; flattened pronotal collar absent (except in Eminoculus); dorsum very seldom heavily punctate; parempodia usually hair-like, parallel, occasionally fleshy, rod-like, of nearly uniform diameter, weakly convergent apically; pulvilli minute or enlarged, free or fused to ventral surface of claws; vesica always twisted (only very slightly in Pseudosthenarus and Parapseudosthenarus), gonopore usually subapical, well developed; left clasper always wedge shaped, trough-like (somewhat modified in Pseudosthenarus); posterior wall never with evaginate posterior margin.

DISCUSSION: The Phylini have traditionally been the tribe in the Phylinae which contained all nonmimetic and/or collarless genera. Until a thorough analysis of this large cosmopolitan group can be undertaken, I am defining the tribe as consisting of all nonmimetic, collarless genera without convergent recurved parempodia.

Tribes recognized by certain authors that I include in the Phylini are Cremnorrhini, Harpocerini, Camptotylini, Exaeretini, Tuponiini, and Semiini. A few additional tribes have been recognized, but these are of mostly historical interest.

The Oncotylini have been recognized by Reuter (1883; etc.), Van Duzee (1916), Knight (1923), and other authors to include genera with enlarged pulvilli (e.g. Lopus Hahn and Macrotylus Fieber). Although many genera with this tarsal condition are probably closely related, they do not appear to merit tribal status, when considered relative to the total variation of the pulvilli in the Phylini. Also, the condition has evolved independently in the Hallodapini (see Coquillettia group).

The Cremnorrhini have recently been recognized (Wagner and Weber, 1964) to include the single Eastern Mediterranean genus Cremnorrhinus with the single included species C. basalis Reuter; the Harpocerini (Wagner, 1952) to include Harpocera Curtis, from Western Europe and the Mediterranean; the Camptotylini and Exaeretini (Wagner, 1952; Wagner and Weber, 1964) to include the Mediterranean genera Camptotylus Fieber and Exaeretus Fieber, respectively; and the Tuponiini (Wagner, 1952, as a subtribe; Wagner and Weber, 1964, as a tribe) to include Tuponia Reuter and closely related genera. None of the above tribes is based on a com-
parative analysis of the world fauna, and for the most part they are founded on structures that vary throughout the Phylini sensu lato. The genitalia in *Camptotylus* (see Wagner and Weber, 1964) (and probably *Exaeretus*), are somewhat peculiar in the Phylinae, but in the form of the right clasper, a parallel to *Camptotylus* is found in *Pseudosthenarus* from South Africa, although the two are probably unrelated, based on the structure of the vesica. The Harpocerini and Cremonnorrhini are defined on color characters (Wagner, 1952). The Tuponiini are separated from the Exaeretini (=Camptotylini) (Wagner and Weber, 1964) on the length and shape of the labium, a character I have found to be extremely variable (e.g., compare *Pseudosthenarus*, *Capecapsus*, and *Coatonocapsus* with one another and with other phylines). The tribe Semiini (Knight, 1923) was erected within the Orthotylini, but the only included genus, *Semium* Reuter, has since been transferred to the Phylini (Kelton, 1959a).

Several genera, in addition to those discussed above, are somewhat anomalous within the Phylini. *Reuteroscopus* Kirkaldy, from North and Central America, has a vesica quite distinct from all other known Phylinae (see Kelton, 1964). The coleopteroid females and stylate eyes of *Eminoculus*, from South Africa, are unique in the Phylinae, and resemble those of *Pachytomella* Reuter in the Halticini. Also *Eminoculus* is the only known Phylini genus with a flattened pronotal collar. This character might relate the genus to the Halloapini, but otherwise *Eminoculus* bears no obvious relationship to that tribe, and the collar is probably independently evolved relative to the Halloapini. The male genitalia of *Pseudosthenarus* and *Parapseudosthenarus* from South Africa, show no close relationship to any other known genera, although externally *Pseudosthenarus* closely resembles some species of *Sthenarus*.

Until the Phylini as a whole can be carefully studied, I do not consider it advisable to subdivide the tribe. Although the other tribes recognized within the subfamily may in some cases represent derivatives of the Phylini (especially the Halloapini), it seems desirable to recognize individual phyletic lines of specialization, e.g. ant mimicry, within the Phylinae, rather than conceal them within an omnibus tribe. Subdivision of the Phylini along phyletic lines at the present time would, however, be nearly impossible.

I have not examined the following genera placed in the Phylini by Carvalho (1958a) and have not found references which will allow confirmation of subfamily or tribal placement: *Alloeotarsus* Reuter, *Boopidocoris* Reuter, *Capellanus* Distant, *Cephalocapsidea* Poppius, *Decomia* Poppius, *Demoplesia* Poppius, *Ectagela* Schmidt, *Ectenellus*
South African Orthotylinae and Phylinae

Zoogeography: The Phylini are the only tribe in the Phylinae that occur in the Neotropical Region (with the exception of one species of Pilophorini). Some records for South America are old and pertain to species placed in large, widely distributed genera, which may in fact be incorrectly assigned. The actual amount of endemism in the Neotropics cannot therefore be accurately determined.

Data for the Nearctic indicate that the fauna consists of two basic elements: 1) an endemic fauna; and 2) a fauna closely related to the Palearctic at the generic level (Figure 351c). The Palearctic phyline fauna is extremely large, but probably not as diverse as the data would indicate. As discussed above, Wagner (1952) and Wagner and Weber (1964) have divided the Palearctic Phylini into five tribes, but the majority of the genera are placed in one tribe, the Phylini. The one element of the Palearctic fauna that has received attention recently, particularly from Wagner (1957b; 1959; 1961; etc.) and Linnavuori (1961; 1964; etc.) is the Mediterranean. This region is very interesting and seems to hold most of the anomalous types in the Palearctic fauna as a whole.

With regard to the Ethiopian Region, my investigations on the Phylini of South Africa reveal some interesting facts. Several generic groups, based on the structure of the male genitalia, appear to exist within the Ethiopian fauna, even though the relationship of the genera is not obvious from general facies. For example, heavy punctations on the dorsum are extremely uncommon in the Phylini. *Lamprosthenarus*, which is heavily punctate, has a vesica very similar to that of *Coatonocapsus*, *Austropsallus*, *Odhiamboella*, and others, which are impunctate.

The genera of Phylini presently recorded from the Oriental region are mostly of wide distribution, occurring in several faunal regions (Fig. 351c). At present no endemic Phylini are known from Australia.

The Phylini are adapted primarily to temperate regions and probably to floras of those areas. This is suggested by the abundance of genera in the Palearctic and Nearctic and the paucity of genera in
tropical areas, a phenomenon that may be to some extent the result of inadequate collecting in the tropics. However, I have examined large collections of Miridae from Africa, and have found very few Phylini from areas other than the Mediterranean and South Africa. Examination of the known distributions of the Bryocorinae and Deraeocorinae, which are no more or less well known than the Phylini, reveals that they are primarily tropical, with only a very few representatives in temperate regions. This confirms that although absolute faunal compositions are not known, the relative diversity of mirid taxa in temperate and tropical areas is well enough known to make useful comparisons.

DISCUSSION OF INDIVIDUAL GENERA.

Odhiambo (1959c) placed Anapsallus in the Hallodapini because of its wide pronotal collar. My examination of the holotype of A. marmoratus Odhiambo reveals that in fact there is no pronotal collar and that the genus belongs in the Phylini.

Ellenia Reuter, 1910a, see page 157.

Erythrocorista Lindberg, 1958, see Orthotylini.

Millerimiris Carvalho, 1951b.

Carvalho (1951b) placed Millerimiris in the Orthotyini, but his illustrations of the male genitalia indicate that it is actually a member of the Phylini. My examination of the holotype of M. punctatus Carvalho reveals that the parempodia are only weakly fleshy and similar to the type found in Ellenia and Capecapsus.

Parafulvius Carvalho, 1954.

This genus was placed in the Fulviini (Cylapinae) by Carvalho (1954), on the basis of the type of claws and male genitalia. Carvalho (1954) stated that Parafulvius resembles Amblytylus Fieber. In fact it is probably closely related to that genus. The genitalia as illustrated by Carvalho are definitely phyleine, and the claws, although they may be long and slender, fit into the range of variation found in the Phylinae.

Paramixia Reuter, 1900, Pilophorini, see page 210.

Platyscytus Reuter, 1907a.

This genus has been assigned to the Orthotylini by Carvalho (1952a; 1958b). Examination of illustrations of the male genitalia of species of Platyscytus described by Carvalho (1953b) and Car-
valho and Fonseca (1965) and examination of specimens of the
genus, indicate that it belongs to the Phylini. Also, the parempodia
are hair-like and not of the type found in the Orthotylini.

Psallops Usinger, 1946, Cylapinae ?, see pages 263–264.

Semium Reuter, 1876a.

Placed in the Orthotylini by Carvalho (1958b), this genus was
correctly moved to the Phylini by Kelton (1959a).

TRIBE PILOPHORINI

DIAGNOSIS: Elongate or robust, sometimes ant mimetic; seldom
if ever strongly brachypterous or sexually dimorphic; head declivous
to nearly vertical, concave behind, posterior margin of vertex usually
carinate; pronotum usually broad and nearly flat, although some-
times highly modified with tubercles or strongly constricted med-
dially; hemelytra usually without defined fasciae contrasting with
background coloration; often with light transverse band on hemelytra
formed by aggregations of sericeous scale-like hairs; parempodia
fleshy, recurved, convergent apically; pulvilli minute; vesica simply
curved, U-shaped, not twisted, without enlarged apical or subapical
gonopore (Figure 318); phallotheca usually nearly straight, without
right-angle bend (L-shaped); opening usually terminal (Figure 325);
left clasper sometimes distinctly trough-like (*Paramixia*, Figure 334),
usually splayed out, wing-like (Figure 320); right clasper small
and leaf-like, typical of subfamily; female genitalia with sclerotized
rings usually with moderate lateral infolding (Figure 317); posterior
wall simple, lacking K-structures (Figure 315), but with evagination
dorsally along posterior margin (Figure 316).

DISCUSSION: Most authors have defined the Pilophorini as those
ant-mimetic mirids with convergent parempodia. Wagner (1952;
1955) was the first author to realize that the tribe, as so defined,
was composed of unrelated genera and he redefined the group as
those mirids with convergent recurved parempodia and Phylinae-
type male genitalia.

In analyzing the Orthotylinae and Phylinae I have concluded that
the convergent recurved parempodia are ancestral and that the hair-
like parempodia found in the Phylinae are derived from them. I
have reached this conclusion because, when convergent recurved
parempodia are regarded as derived, as can be inferred from most
classifications, it becomes necessary to evolve the phyline-type male
genitalia twice. I am following Knight (1941) who regarded the
complex structure of the phyline male genitalia as a fundamental
character in classification; I consider them to be derived and therefore (as previously discussed) place the Pilophorini in the Phylinae, rather than the Orthotylinae as all previous authors have done. I interpret the convergent recurved parempodia as primitive; thus the phylene-type male genitalia need to be evolved only once.

As members of the most primitive phylene tribe, *Pilophorus* and closely related genera (e.g. *Aloea*) have the simplest male genitalia in the subfamily. The vesica is a U-shaped, untwisted tube with a gonopore that is little more than a subapical opening in the wall of the vesica. The most complex pilophorine vesica is that of *Paramixia* Miller. Although U-shaped and untwisted, the vesica is no longer a simple tube, but consists of what resemble two partially concentric sclerotized bands. Peculiar projections on the inner surface of the vesica are a unique feature of many pilophorine genera (e.g. *Pilophorus*, *Paramixia*). The pilophorine phallotheca is also plesiomorphic in the Phylinae. It is not bent at a right angle (except in *Paramixia*) as in all other Phylinae, and is structurally closest to the orthotyline-type. As discussed above, the pilophorine posterior wall is advanced in the Phylinae and must have evolved subsequent to the split of the Phylinae into the Pilophorini and non-Pilophorini lines of evolution.

The Pilophorini apparently do not possess brachypterous forms, although they are common in all other phylene tribes. The greatest degree of wing modification or reduction in this tribe is what might best be called submacroptery, as found in females of *Aloea*. Even in the ant-mimetic genus *Pilophorus*, brachypterous females are unknown. Wing polymorphism is an adaptation to a specialized or stable environment (see Sweet, 1964) and therefore must be derived. The apparent absence of brachyptery in the Pilophorini is a further suggestion of their primitiveness in the Phylinae.

Zoogeography: My redefinition of the Pilophorini on a world basis changes the zoogeographic picture from one of more or less equal distribution in all zoogeographic regions in the Carvalho classification to one of greatest diversity in the Old World tropics and virtual absence from the neotropics (Figure 351d).

Two relatively distinct groups of genera can be recognized in analyzing the distribution of the Pilophorini. The *Ambonea* group is not ant mimetic. It is restricted primarily to Africa, constituting almost the entire fauna there; the only nonmember of the *Ambonea* group found in Africa is a single species of *Pilophorus*. The *Pilophorus* group, which is distinctly ant mimetic, is most diverse in Southeast Asia, with limited representation in the Nearctic and Pale-
arctic. In North America *Pilophorus* has radiated extensively, but no studies have been undertaken to determine if the 50 or so described species from that region are all closely related or if they represent separate elements in the genus and therefore independent invasions of the continent. The limited generic representation of the tribe in North America indicates invasion of the area from Southeast Asia, possibly via the Bering Land Bridge, rather than migration from North America to Southeast Asia.

Paramixia, a morphologically somewhat anomalous genus in the *Pilophorini*, is pantropical, *P. carmelitana* (Carvalho) being the solitary neotropical pilophorine. *Parasthenaridea* Miller, a pilophorine with specialized male genitalia, but resembling the *Ambonea* group, is known only from Malaya.

DISCUSSION OF INDIVIDUAL GENERA

The incorrect subfamily placement and ant-mimic definition of the Pilophorini by Carvalho (1952a; 1958b) obscured the true relationships of the group as a whole and also of many included genera.

Alepidea Reuter, 1909.

Alepidea is very closely related to *Pilophorus* by the structure of the male genitalia (Kelton, 1959b) and by the structure of the female genitalia, in which the posterior margin of the posterior wall is evaginated.

Two species are known, both from the Eastern United States.

Alepidiella Poppius, 1914b.

This genus contains only a single species from the Eastern United States. It is very closely related to *Alepidea*.

Aloea Linnanvuori (in press), see page 196.

Ambonea Odhiambo, 1960b, see page 201.

* *Anthropophagiotes* Kirkaldy, 1908, see genera *incertae sedis*.

* *Borgmeierea* Carvalho, 1956c, see Orthotylini.

* *Cyphopelta* Van Duzee, 1910, Mirinae, see misplaced genera.

* *Cyrtopeltocoris* Reuter, 1876a, see Hallophapini.

* *Dolichostenia* Poppius, 1921, see genera *incertae sedis*.

* *Eucerella* Poppius, 1921, see Orthotylini.

* *Eucompsella* Poppius, 1914a, see Nichomachini.
* Hallodapoides Carvalho, 1951a, see Orthotylini.

Hyseloecus Reuter, 1891.

The placement of _Hyseloecus_ in the Pilophorini (Wagner, 1952) is verified by the structure of the parempodia and male genitalia. A single species is known from the Palearctic.

* _Kirkaldyella_ Poppius, 1921, see Orthotylini.

* _Laemocoridea_ Poppius, 1921, see Orthotylini.

* _Lasiomimus_ Poppius, 1914a, see genera _incertae sedis_.

* _Lepidotaenia_ Poppius, 1921, see Orthotylini.

* _Leucophoroptera_ Poppius, 1921, see Leucophoropterini.

* _Lutheriella_ Poppius, 1913, see genera _incertae sedis_.

* _Myrmecophyes_ Fieber, 1870, see Halticini.

* _Myrmecoridea_ Poppius, 1921, see genera _incertae sedis_.

* _Myrmecozelotes_ Berg, 1883, see genera _incertae sedis_.

Neoambonea Schuh, new genus, see page 204.

* _Nichomachus_ Distant, 1904a, see Nichomachini.

* _Opistocyclus_ Poppius, 1914a, Deraeocorinae, see misplaced genera.

Parambonea Schuh, see page 207.

Paramixia Reuter, 1900, see page 210.

Parasthenaridea Miller, 1937.

See Pilophorini tribal discussion. The female genitalia will help to confirm tribal placement of _Parasthenaridea_. Only a single species is known from Malaya.

* _Pilophoropsis_ Poppius, 1914c, see Orthotylini.

Pilophorus Hahn, 1826.

Reuter (1910a) placed _Pilophorus_ in the division Heterotomaria in the subfamily Heterotomina; Carvalho (1952a) placed the genus in the Pilophorini, as have most other modern authors. Slater (1950) noted the marked differences in the female genitalia between _Pilophorus_ and _Pseudoxenetus_, the two genera he studied in the Pilophorini, particularly the lack of K-structures in _Pilophorus_ and their presence in _Pseudoxenetus_. Kelton (1959b) correctly noted that
the male genitalia of *Pilophorus* appeared much more closely allied to the Phylinae than to the Orthotylinae. *Pilophorus* may be composite as presently constituted, but the basic body plan is the same in all species, and the male genitalia are very similar from species to species for those representatives that have been examined. The female genitalia have the distinct evagination along the posterior margin of the posterior wall.

Pilophorus is well represented in the Palearctic, Nearctic, and Oriental regions. Only one species is known from sub-Saharan Africa and none are as yet recorded from the neotropics or from Australia.

* Pseudoxenetus Reuter, 1909, see Orthotylini.
* Renodaeus Distant, 1893, see Orthotylini.
* Sericophanes Reuter, 1876a, see Orthotylini.
* Tuxenella Carvalho, 1952d, see Orthotylini.
* Zanchisme Kirkaldy, 1904, see genera incertae sedis.

Zaratus Distant, 1909b.

Zaratus is known only from the holotype female of *Z. repandus* Distant, from India. The genus was placed in the Pilophoraria by Distant (1910b), *genera incerta* by Reuter (1910a), and the Pilophorini by Carvalho (1952a). My examination of the holotype indicates that the genus is very closely related to *Pilophorus*, although I have not examined the genitalia. This conclusion is supported by its occurrence in Southeast Asia.

MISPLACED GENERA

Bunsua Carvalho, 1951b.

This African genus was placed in the Orthotylini by Carvalho (1952a). Examination of a paratype of *Bunsua bryocoroides* Carvalho reveals that the genus has the pulvilli attached to the interior surface of the claws and that the posterior wall lacks K-structures. *Bunsua* must therefore be removed from the Orthotylinae and placed in the Bryocorinae, at least tentatively.

Careful examination of the type material of the genus *Petasma* Odhiambo, 1960 (pp. 343–348), reveals that it is synonymous with *Bunsua* Carvalho (New Synonymy).

1 The genera listed were placed in the Orthotylinae or Phylinae by Carvalho (1952a; 1958a, b) or subsequent authors but actually belong in other subfamilies.
Closterocoris Uhler, 1890.

The tribal position of Closterocoris has been in dispute for some time. Carvalho (1952a) placed the genus in the Hallodapini, although Knight (1922) had shown rather conclusively that it belongs to the Mirinae. Kelton (1959b) confirmed the placement in the Mirinae on the basis of the male genitalia. Wagner (1970b) placed Closterocoris in his Cremnocephalini (Phylinae), even though he had access to Kelton's work on the male genitalia and routinely used the vesica in the Phylinae as a diagnostic feature of the subfamily.

Cyphopelta Van Duzee, 1910.

Kelton (1959b) confirmed the placement of Cyphopelta in the Mirinae on the basis of the male genitalia, although previous workers showed great disagreement on the proper subfamily position. Carvalho (1952a) placed Cyphopelta in the Pilophorini.

Glossopeltis Reuter, 1903.

This African genus was placed in the Hallodapini by Carvalho (1952a). The strongly toothed claws, hair-like parempodia, punctate dorsum, rounded pronotal collar, male genitalia, and claws without pulvilli all confirm a position in the Deraeocorinae, Surinamellini (Carvalho and Fonseca, 1962), however.

Specimens of G. coutierei Reuter, the type species of the genus, are present in both the Helsinki and Paris Museums. The single female specimen in Paris bears no locality labels, but has a determination label reading "Glossopeltis coutierei Reuter n.g. et n. sp., spec. typ." Single male and female specimens from Helsinki bear "Obock" labels; the female also bears a determination label of Poppius. Reuter (1903) did not indicate that specimens from the type series which he examined were placed in Helsinki, but Poppius (1914a) cited the same locality data as Reuter (1903) and noted that specimens did exist in Helsinki. The locality data of the two specimens in Helsinki do not agree exactly with that given in Reuter's original description (they read "Museum Paris, OBOCK, Maindron 871–93"), but the specimens are probably those examined by him. I have therefore labeled the female specimen in the Paris Museum as the lectotype—"LECTOTYPE Glossopeltis coutierei Reuter, det R. T. Schuh."

Heidemanniella Poppius, 1914c.

The North American genus has long been placed in the Hallodapini (Carvalho, 1952a). My examination of the holotype of H.
scutellaris Poppius, reveals that Heidemanniella is probably most closely related to Cyphopelta and Closterocoris in the Mirinae. The only specimen is the holotype female and at the time of my examination it was glued to a card so that the parempodia were not visible. Additional specimens and further study will almost certainly confirm placement of Heidemanniella in the Mirinae rather than the Phylinae.

This African genus is very closely related to Opistocyclus Poppius. Odhiambo (1967) placed Makakix in the Hallodapini, with reservation. He gave excellent illustrations of the tarsal claws, which are strongly toothed at the base, but did not mention a possible relationship to the Deraeocorinae. The male genitalia of Makakix are not available. Examination of related genera, including Nicostratus Distant, reveals that the form of the tarsal claws is a valid subfamily character for recognizing mimetic as well as nonmimetic Deraeocorinae. Makakix belongs to the Deraeocorinae, Surinamellini.

Nicostratus Distant, 1904c.

Carvalho (1952a) assigned this peculiar Southeast Asian genus to the Hallodapini. The strongly toothed tarsal claws and the male genitalia, however, unequivocally place it in the Deraeocorinae, Surinamellini.

Opistocyclus Poppius, 1914a.

This African genus is most closely related to Makakix and Glossopeltis, as confirmed by the strongly toothed tarsal claws, conical scutellum, and punctate dorsum. Therefore it must be placed in the Deraeocorinae, Surinamellini.

Poppius (1914a) stated that the type of O. myrmecoides Poppius, the only species in the genus, was deposited in the Berlin-Humboldt Museum; however, it is in the Helsinki Museum (Type No. 7775).

Tylopeltis Reuter, 1904.

My examination of the holotype of Tylopeltis albosignata Reuter, the only species in the genus, in the Brussels Museum, indicates that Tylopeltis does not belong to the Hallodapini (Carvalho, 1952a), but to the Deraeocorinae, Surinamellini. This position is supported by the structure of the male genitalia, the conical scutellum, the punctate dorsum, and the rounded pronotal collar.
Genera incertae sedis

Amazonocoris Carvalho, 1952c.

Amazonocoris longipilosus Carvalho was placed in the Hallo-
dapini by Carvalho (1952a). On the basis of the male genitalia as
illustrated by Carvalho (1952c), this Brazilian genus appears to be
much more closely related to the Dicyphinae than to the Phylinae.
Carvalho does not mention the structure of the parempodia in the
original description, but says only that the pulvilli are minute, which
would suggest that Amazonocoris does not belong to the Dicyphinae.
I have not been able to find the holotype of A. longipilosus in the
British Museum (Natural History) and therefore cannot determine
the correct subfamilial placement.

Anthropophagiotes Kirkaldy, 1908.

The whereabouts of the holotype of the only species included
in this Fijian genus is unknown, and the original description is in-
adequate for placing the genus in the correct subfamily. Carvalho
(1952a) placed Anthropophagiotes in the Pilophorini.

Dolichostenia Poppius, 1921.

I have not seen specimens of this genus erected by Poppius
(1921) for a species from Chile, and therefore its subfamily place-
ment must remain uncertain. Carvalho (1952a) placed Dolicho-
stenia in the Pilophorini. This is almost certainly incorrect, and it
will probably prove to be a member of the Orthotylini.

China described this peculiar genus from Chile, and on the basis
of the pretarsal structures and male genitalia placed it in the Ortho-
tylini. This is certainly incorrect. Idiomiris is much more closely
related to either the Mirinae or the Deraeocorinae than to the Ortho-
tylini. I was not able to find the male genitalia in the British Mu-
seum (Natural History). All of the characters enumerated by China,
however, indicate the closest relationship with the Deraeocorinae,
as does the basic facies, even though the claws are not toothed ba-
sally, as is usually the case in that subfamily.

Lasiomimus Poppius, 1914a.

I have not examined specimens of this African genus, although
they are probably present in the Leningrad Museum. Carvalho
(1952a) placed Lasiomimus in the Pilophorini.

1 The genera listed were placed in the Orthotylinae and Phylinae by Car-
valho (1952a; 1958a,b) or by subsequent authors, but are unknown to me
or are otherwise of uncertain systematic position.
Lissocapsus Bergroth, 1903.

Bergroth (1903) commented that the type specimen of L. wasmanni Bergroth was received from E. Wasmann of Luxembourg, but he did not say where it was deposited. Until specimens of this species can be located and carefully examined, the subfamily placement must remain in question. Carvalho (1952a) placed this Madagascan genus in the Hallodapini.

Lutheriella Poppius, 1913. = Acrothrinium Novakiev

I have not seen specimens of this genus from Ceylon, and therefore cannot confirm its placement in the Pilophorini (Carvalho, 1952a).

Myrmecoridea Poppius, 1921.

The type specimens of this Australian genus are probably deposited in the Hungarian Museum (Poppius, 1921) and will have to be examined before its subfamily placement in the Pilophorini (Carvalho, 1952a) can be confirmed.

This very peculiar genus from Australia has apically convergent recurved parempodia, but the bizarre structure of the head and the strong ant-mimetic facies require that the male and female genitalia be examined before subfamily placement can be confirmed.

Myrmecozelotes Berg, 1883.

This Argentinian genus was placed in the Pilophorini by Carvalho (1952a). I have not examined specimens and have not found adequate information in the literature to determine its correct subfamily placement.

Zanchisme Kirkaldy, 1904. = Orthotylini

This Neotropical genus probably belongs to the Orthotylini. Carvalho (1952a) placed it in the Pilophorini. I have not examined specimens or found adequate information in the literature to confirm the subfamily placement of Zanchisme.

ACKNOWLEDGMENTS

I would especially like to thank Dr. James A. Slater of the University of Connecticut, who took a genuine personal interest in this project. Dr. Slater's willingness to discuss problems and to lend new ideas, and the unrestricted use of his fine library of hemipterological literature, helped immensely in bringing this work into its final form.
Dr. W. G. H. Coaton, Director, Systematic Entomology, Plant Protection Research Institute, Pretoria, provided untiring assistance during our stay in South Africa during 1967–1968 and was instrumental in the success of the field work and local arrangements. The staff of the South African National Herbarium, Pretoria, graciously identified all of the host plant specimens. My wife, Janet C. Schuh, constantly stimulated my thinking and typed the original manuscript. Others who have read portions of the manuscript or otherwise helped in ways too diverse to enumerate here are Drs. M. H. Sweet, C. W. Schaefer, and H. W. Pfeifer, and Mrs. D. B. Wilcox.

The following persons have supplied specimens or identifications and many also provided museum space and a pleasant working environment: Dr. P. Arnaud, California Academy of Sciences; Dr. M. Beier, Naturhistorisches Museum, Vienna; Drs. R. C. Froeschner and J. L. Herring, United States National Museum; Mr. Wayne Gagné, Bishop Museum, Honolulu; Dr. U. Göllner-Scheiding, Humboldt University Zoological Museum, Berlin; Dr. A. J. Hesse, South African Museum, Cape Town; Dr. W. J. Knight and Mr. W. R. Dolling, British Museum (Natural History); Dr. Carl Lindroth, Lund University Zoological Institute; Mr. M. Meinander, Helsinki University Zoological Museum; Dr. J. Munting, former curator, South African National Collection of Insects; Dr. P. I. Persson, Naturhistoriska Riksmuseum, Stockholm; Drs. P. Basilewsky and G. Schmitz, Musée Royal de l’Afrique Centrale, Tervuren; Dr. D. R. Smith, Systematic Entomology Laboratory, United States Department of Agriculture; Dr. Henri Synave, Institut Royal des Sciences Naturelles de Belgique, Brussels; Dr. L. Vari, Transvaal Museum, Pretoria; Drs. Andre Villiers and J. Carayon, Museum National d’Histoire Naturelle, Paris; and Dr. P. Wygodzinsky, American Museum of Natural History, New York.

The National Science Foundation, through a grant to the University of Connecticut for graduate studies in evolutionary biology, and the University of Connecticut Research Foundation have provided generous financial support. This has allowed me to travel to South Africa, to visit museums in the United States and Europe, and devote an uninterrupted year to the completion of this work.

REFERENCES

ACOCKS, J. P. H.

ASHLOCK, P. D. AND J. D. LATTIN.
1963. Stridulatory mechanisms in the Lygaeidae, with a new Amer-

BAILEY, H. P.

BALLARD, E.

BERG, C.

BERGROTH, E.

BRINKHURST, R. O.

CARAYON, J.

CARVALHO, J. C. M.

1952c. Neotropical Miridae. LVI. Description of three new genera

CARVALHO, J. C. M. AND J. BECKER.

CARVALHO, J. C. M. AND J. A. P. DUTRA.

CARVALHO, J. C. M., J. A. P. DUTRA, AND J. BECKER.

CARVALHO, J. C. M. AND A. FONSECA.

CARVALHO, J. C. M. AND D. LESTON.

CARVALHO, J. C. M. AND T. R. E. SOUTHWOOD.

CHINA, W. E.

CHINA, W. E. AND J. C. M. CARVALHO.

COBBEN, R. H.

DAVIS, N. T.

DELATTRE, R.

DIETZ, R. S. AND J. C. HOLDEN.

DISTANT, W. L.

EMSLEY, M.

FIEBER, F. X.

GOEL, S. C. AND C. W. SCHAFFER.

GROSS, G. F.

HAHN, C. W.

1826. Icones ad Monigraphium Cimicum. Lechner, Nürnberg.

HAHN, C. W. AND G. A. W. HERRICH-SCHAEFFER.

HENNING, W.

Hoberlandt, L.

Hutchinson, J.

Kelton, L. A.

Kerzhner, I. M. and T. L. Yaczewski.

Kirkaldy, G. W.

Knight, H. H.

Kullenberg, B.

Leston, D.

Lethierry, L.

Lindberg, H.

Linnavuori, R.

Maldonado, J.

Miller, N. C. E.

Moreau, R. E.

Motschulsky, V.

Nowalhier, M. J. M.

Odhambo, T. R.

PHILLIPS, E. P.

POPIUS, B.

POYNTON, J. C.

REUTER, O. M.

1884. [Diagnosen neuer arten] in P. M. Ferrari: Materiali per lo

Schmitz, G.

schuh: south african orthotylineae and phylinae 329

Scott, J.

Signoret, V.

Singh-Pruthi, H.

Slater, J. A.

Slater, J. A. and T. Schuh.

Southwood, T. R. E.

Southwood, T. R. E. and D. Leston.

Stål, C.

Stuckenberg, B.

Sweet, M. H.

Uhler, P. R.
1876. List of the Hemiptera of the region west of the Mississippi

UISINGER, R. L.

VAN DUZEE, E. P.

WAGNER, E.

WAGNER, E. AND H. H. WEBER.

WOODROFFE, G. E.

WYGODZINSKY, P.

ZIMMERMAN, E. C.

ZINDEREN BAKKER, E. M. VAN.

ZINDEREN BAKKER, E. M. VAN, EDITOR.
INDEX

Acrorrhinium Noualhier 11, 66, 300
acutum Odhiambo, Acrorrhinium 69
adenandrae Schuh, Denticulophallus 13, 156
Aeolocoris Reuter 12, 121, 300
tagalestus Kirkaldy, Diocoris 12, 122
alba Schuh, Zanchius 11, 60
albicoxa Schuh, Parasciodema 13, 180
alboconspersus Reuter, Aeolocoris 12, 121
albofasciatus (Motschulsky), Hallodapus
[Leptomerocoris] 11, 92, 94
albonotum Schuh, Austropsallus 12, 139
Alepidiella Poppius 313
Alepeidea Reuter 313
Allooeomimus Reuter 300
Aloea Linnavuori 14, 196, 313
Amazonocoris Carvalho 300, 318
Ambonea Odhiambo 14, 201, 313
Amixia Carvalho 210
Anapsallus Odhiambo 300, 310
Anthropophagioites Kirkaldy 313, 318
Aspidacanthus Reuter 300
ater Poppius, Pseudosthenarus 13, 186
australis Schuh, Aloea 14, 197
australis Schuh, Paramixia 14, 218, 220
australis Schuh, Trichophorella 12, 115
australis Schuh, Trichophthalmocapsus .. 12, 117, 118
Austropsallus Schuh 12, 136
Azizus Distant 11, 80, 103, 294, 300

barbertonensis Schuh, Stoebea 13, 191
Basalis Carvalho, Dutra, & Becker, Sthenarus 220
basilewskyi Carvalho, Azizus 81
basilicus Distant, Azizus 81
bathycephala China & Carvalho, Myombe 11, 104
begrothi (Poppius, Paramixia [Cephalocapsus] 218
bendera Odhiambo, Pangania 105
Bibundiella Poppius 300
bifasciatus Poppius, Systellonotopsis 12, 111
bifasciatus Schuh, Karoocapsus 12, 125

B cont.
<table>
<thead>
<tr>
<th>Name</th>
<th>Page Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bilirania Carvalho</td>
<td>306</td>
</tr>
<tr>
<td>Boopidella Reuter</td>
<td>12, 121, 300</td>
</tr>
<tr>
<td>Borgmeierea Carvalho</td>
<td>282, 313</td>
</tr>
<tr>
<td>bowkeriae Schuh, Zanchiella</td>
<td>11, 51</td>
</tr>
<tr>
<td>Brachycranella Reuter</td>
<td>12, 145</td>
</tr>
<tr>
<td>brincki Carvalho & Becker, Acrrhinium</td>
<td>11, 69, 70</td>
</tr>
<tr>
<td>brincki Schuh, Systellonotus</td>
<td>12, 112</td>
</tr>
<tr>
<td>brunnescens (Usinger), Paramixa [Orthotylellus]</td>
<td>218</td>
</tr>
<tr>
<td>brunneus Schuh, Karoocapsus</td>
<td>12, 127</td>
</tr>
<tr>
<td>bryocorina (Poppius), Felisacodes [Rhod siella]</td>
<td>10, 40</td>
</tr>
<tr>
<td>buddleiae Schuh, Zanchius</td>
<td>11, 61</td>
</tr>
<tr>
<td>Bunsua Carvalho</td>
<td>282, 315</td>
</tr>
<tr>
<td>Capecapsus Schuh</td>
<td>13, 146</td>
</tr>
<tr>
<td>capeneri Schuh, Lasiolabopella</td>
<td>13, 166</td>
</tr>
<tr>
<td>capeneri Schuh, Pseudambonea</td>
<td>10, 44</td>
</tr>
<tr>
<td>capeneri Schuh, Pseudonichomachus</td>
<td>10, 35</td>
</tr>
<tr>
<td>capeneri Schuh, Pseudopilophorus</td>
<td>11, 48</td>
</tr>
<tr>
<td>capensis Schuh, Acrrhinium</td>
<td>11, 69, 71</td>
</tr>
<tr>
<td>Capsus</td>
<td>146</td>
</tr>
<tr>
<td>Carinogulus Schuh</td>
<td>11, 81, 300</td>
</tr>
<tr>
<td>carmelitanus (Carvalho), Paramixa [Rhinocloa]</td>
<td>218</td>
</tr>
<tr>
<td>Cephalocapsus Poppius</td>
<td>210</td>
</tr>
<tr>
<td>Chaetocapsus Poppius</td>
<td>300</td>
</tr>
<tr>
<td>chariensis (Odhiambo), Hallodapus</td>
<td></td>
</tr>
<tr>
<td>[Trichophthalmocapsus]</td>
<td>92, 94, 117</td>
</tr>
<tr>
<td>chnous (Odhiambo), Pangania [Systellonotopsis]</td>
<td></td>
</tr>
<tr>
<td>Cinnamus Distant</td>
<td>12, 105, 105</td>
</tr>
<tr>
<td>Closterocoris Uhler</td>
<td>66</td>
</tr>
<tr>
<td>Clypealis (Poppius), Paramixa [Cephalocapsus]</td>
<td>300, 316</td>
</tr>
<tr>
<td>Coatonocapsus Schuh</td>
<td>13, 148</td>
</tr>
<tr>
<td>conspersus Noualhier, Acrrhininum</td>
<td>69</td>
</tr>
<tr>
<td>Coquillettia Uhler</td>
<td>298, 300</td>
</tr>
<tr>
<td>Coriodromus Signoret</td>
<td>282</td>
</tr>
<tr>
<td>Cremnocephalus Fieber</td>
<td>297</td>
</tr>
<tr>
<td>cynanchi Schuh, Neoambonea</td>
<td>14, 205</td>
</tr>
<tr>
<td>Cyphopelta Van Duzee</td>
<td>313, 316</td>
</tr>
<tr>
<td>Cyrtopeltocoris Reuter</td>
<td>296, 301, 313</td>
</tr>
<tr>
<td>"torhinus Fieber</td>
<td>10, 38, 135</td>
</tr>
</tbody>
</table>
Denticulophallus Schuh 13, 155
dibuora Odhiambo, Felisacodes 40
Diocoris Kirkaldy 12, 122, 301
discoidalis (Poppius), Hallodapus [Plagiorhamma] ... 92
dispar (Odhiambo), Hallodapus [Azizus] 81, 92, 103
Dolichostenia Poppius 313, 318
drakensbergensis Schuh, Acrorrhinium 11, 69, 72
drakensbergensis Schuh, Austropsallus 12, 140

Ectmetocranum 74
elginensis Schuh, Stoebea 14, 192
Ellenia Reuter 13, 157, 282, 310
Eminoculus Schuh 13, 160
Eremachrus Lindberg 301
ericae Schuh, Zanchiella 11, 54
Erythrocorista Lindberg 282, 310
Eucerella Poppius 283, 301, 313
Eucompsella Poppius 276, 313

fasciata Reuter, Boopidella 12, 122
fasciatipennis Poppius, Pangania 12, 105
Felisacodes Bergroth 10, 40
femoralis (Poppius), Paramixia [Cephalocapsus] ... 218
flaveolus Reuter, Leptoxanthus 13, 169
flavomaculatus Schuh, Karoocapsus 12, 129
Formicarium (Poppius), Acrorrhinium [Ectmetocranum] ...
... 11, 69, 74
Formicopsella Poppius 11, 89, 111, 301

Gampsodema Odhiambo 122, 301
Glaphyrocoris Reuter 84, 301
Glossopeltis Reuter 301, 316
grossus Schuh, Pseudosthenarus 13, 187
Hallodapoides Carvalho .. 283, 301, 314
Hallodapus Fieber .. 11, 91, 301
Halticus Hahn .. 10, 29
hebes Odhiambo, Acrorhinium 69
Heidemanniella Poppius ... 301, 316
helichrysi Schuh, Austropsallus 12, 141
hemizygae Schuh, Macrotylus 13, 170
hessei Schuh, Trichophthalmocapsus 12, 117, 119
heteromorphae Schuh, Natalophylus 13, 174
hirsutus Odhiambo, Trichophthalmocapsus 118
hirsutus Schuh, Eminoculus 13, 162
hobohmi Schuh, Carinogulus 11, 85
howanus (Poppius), Paramixia [Cephalocapsus] 218
Hypomimus Lindberg ... 84, 301
Hypseloecus Reuter .. 283, 314

Idiomiris China .. 283, 318
incrassata Schuh, Acrorrhinium 11, 75

jamesi China, Trichophthalmocapsus 118
johannsmeieri Schuh, Coatonocapsus 13, 151

Kapoetius Schmitz ... 301
Karoocapsus Schuh ... 12, 123, 306
Kirkaldyella Poppius ... 283, 314
kirstenboschiana Schuh, Widdringtoniola 14, 195
kochi Schuh, Carinogulus 11, 87
Kuomocoris Odhiambo .. 276
Laemocoridea Poppius 284, 314
Laemocoris Reuter 11, 103, 302
Lamprosthenarus Poppius 164
Lasiolabopella Schuh 13, 165
Lasiomimus Poppius 314, 318
Laurinia Reuter 277
Lepidocapsus Poppius 13, 167
Lepidotaenia Poppius 284, 314
Leptoxanthus Reuter 13, 169
Leucophoroptera Poppius 306, 314
leucosideae Schuh, Zanchius 11, 62
Lissocapsus Bergroth 302, 319
longipides (Carvalho), Felisacodes [Madagascariella] 40
Loxops Fieber 45
lupa (Delattre), Acrorrhinium [Seversya] ... 69
Lutheriella Poppius 319, 314

Macrotylus Fieber 13, 170
Madagascariella Carvalho 40
Makakix Odhiambo 302, 317
Malgacheocoris Carvalho 302
Marmorodapus Schmitz 302
Marshalliella 158
Megacoeloides 81
melanops (Carvalho, Dutra & Becker), [Cyrторhinus], see Tytthus parviceps ... 135
melanostethoides Schuh, Namaquacapsus .. 10, 27
middelburgensis Schuh, Austropsallus 12, 142
middelburgensis Schuh, Karoocapsus 12, 130
Millerimiris Carvalho 284, 310
mimeticus Schuh, Pseudonichomachus 10, 37
Mimocapsus Wagner 302
Mimocoris Scott 296, 302
minuta (Poppius), Paramixia [Troitskiella] ... 218, 228
minutus Schuh, Nichomachus 10, 32
monoceros (Distant), Acrorrhinium [Armachanus] 69
monticola Schuh, Acrorrhinium 11, 69, 76
munroi Schuh, Ambonea 14, 201
muntingi Schuh, Acrorrhinium 11, 77

M cont.
M cont.

Myombea China and Carvalho 11, 104, 302
Myrmecophyes Fieber 274, 314
Myrmecoridea Poppius 314, 319
Myrmecoroides Gross 319
Myrmecozelotes Berg 314, 319
Myrmicomimus Reuter 297, 302
Myrmicopsella Poppius 302, 306

Namaquacapsus Schuh 10, 26
namaquaensis Poppius, Pseudosthenarus 13, 187
Nanniella Reuter 10, 28, 284
natalensis Schuh, Zanchiella 11, 56
Natalophylus Schuh 13, 173
Neoambonea Schuh 14, 204, 314
Nichomachus Distant 10, 29, 277, 314
Nicostratus Distant 302, 217
niger Schuh, Macrotylus 13, 171
nigra (Poppius), Paramixia [Schroederiella] 218
nigricornis (Poppius), (Sthenarus) 13, 189
nigrofemur Schuh, Parasciodema 13, 181
nigrolineatus Schuh, Zanchius 11, 62
nilgiriensis (Distant), Acrorrhinium [Armachanus] 69
nitens Poppius, Parasciodema 13, 181
obscuricornis (Poppius), Ellenia 159
obscurus Schuh, Karoocapsus 12, 132
oculatus (Poppius), Azizus [Megacoeloides] 11, 81
occidentalis Schuh, Karoocapsus 12, 132
Odhiamboella Schuh 13, 175
Omphalonotus Reuter 302
Opistocyclus Poppius 314, 317
Orectoderus Uhler 298, 302
Orthotylellus Knight 210, 284
Orthotylinae, subfamily 269
oudtshoorensis Schuh, Acrorrhinium 11, 69, 79
pallescens (Usinger), Paramixia [Orthotylellus] . 218
pallidus Schuh, Coatonocapsus 13, 152
Pamilia Uhler 280, 284
pandus Odhiambo, Systellonotopsis 111
Pangania Poppius 12, 104, 302
Parafulvia Carvalho 310
Paralaemocoris Linnavuori 302
Parambionea Schuh 14, 207, 214
Paramixia Reuter 14, 210, 310, 214
Parapseudosthenarus Schuh 13, 177
Parasciodema Poppius 13, 179
Parasthenaridea Miller 284, 314
parviceps (Reuter), Tytthus 12, 135
pauliani Carvalho, Acrorrhinium 69
Phylineae, subfamily 286
Pilophoropsis Poppius 280, 284, 314
Pilophorus Hahn 14, 232, 314
pilosa (Reuter), Hallopadus [Plagiorhamma] 92
pilosus Carvalho, Dutra & Beck, Trichophthalmocapsus 119
pilosus Odhiambo, Pilophorus 14, 232
plagiorhamma Pseudopilophorus 12, 118, 121
Platyscytus Reuter 284, 310
plettenbergensis Schuh, Stoebba 14, 193
poseidon (Kirkaldy), Hallopadus [Laemocoris]11, 92, 103
Psallops Usinger 263, 311
Psallus Fieber 13, 158, 182
Pseudambionea Schuh 10, 42
Pseudoloxops Kirkaldy 10, 45
Pseudonichomachus 10, 35, 277
Pseudopilophorus Schuh 11, 47
pseudosimilis Schuh, Hallopadus 11, 92, 96
Pseudosthenarus Poppius 13, 177, 183, 189
Pseudoxenetus Reuter 284, 315
pulchrus Schuh, Karoocapsus 12, 133
pumilis (Odhiambo), Trichophthalmocapsus [Systellonotopsis] 12, 112, 118, 121
pusae (Ballard), Acrorrhinium [Armachanus] 69
Luadrimaculatus Schuh, Hallodapus 11, 92, 98

regneri Poppius, Formicopsella 11, 90
Renodaeus Distant 285, 315
reuteri (Poppius), Hallodapus [Tyraquellus] 94
rhinocerus (Distant), Acrorrhinium [Cinnamus] 69
Rhodesiella Poppius 40
Ribautocapsus Wagner 303
rozeni Schuh, Pseudosthenarus 13, 188
rubella Odhiambo, Trichophorella 115
rubrum Poppius, Lepidocapsus 13, 168
rufescens Schuh, Nichomachus 10, 33
rufescens (Usinger), Paramixia [Orthotylellus] 218
rustenbergensis Schuh, Ambonea 14, 203

samoanus (Knight), Paramixia [Orthotylellus] 218
samueli Schuh, Aloea 14, 218, 228
saniensis Schuh, Austropsallus 12, 143
Schnaffneria Knight 280, 285
Schroederiella Poppius 210
Semium Reuter 285, 311
senecionus Schuh, Austropsallus 12, 144
Sericophanes Reuter 280, 285, 315
Sericophanoides Carvalho & Fonseca 285
similis (Poppius), Hallodapus [Plagiorhamma]
........................ 11, 94, 100
sjostedti Poppius, Lamprosthenarus 13, 165
Skukuza Schuh 12, 108
slateri Schuh, Neoambonea 14, 206
slateri Schuh, Skukuza 12, 109
Slaterocoris Wagner 285
slogetti Distant, Nichomachus 10, 33
Sothenus Distant 303
solani (Odhiambo), Odhiamboella 13, 177
sordidipennis (Reuter), Trichophorella 115
spicatus (Distant), Acrorrhinium [Armachanus] 69
Sthenarus - Campylomma 189, 220
Stoebea Schuh 13, 190
Strongylocoris Blanchard 274

S cont.
<table>
<thead>
<tr>
<th>Species/Moniker</th>
<th>Page Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>S. Kirkaldy</td>
<td>279, 285</td>
</tr>
<tr>
<td>Suturalis Reuter, Paramixia</td>
<td>14, 218, 228</td>
</tr>
<tr>
<td>Sweeti Schuh, Coatonocapsus</td>
<td>13, 153</td>
</tr>
<tr>
<td>Sweeti Schuh, Nichomachus</td>
<td>10, 34</td>
</tr>
<tr>
<td>Sweeti Schuh, Zanchiella</td>
<td>11, 57</td>
</tr>
<tr>
<td>Syngonus Bergroth</td>
<td>303</td>
</tr>
<tr>
<td>Systellonotidea Poppius</td>
<td>122, 303</td>
</tr>
<tr>
<td>Systellonotopsis Poppius</td>
<td>12, 106, 111</td>
</tr>
<tr>
<td>Systellonotus Fieber</td>
<td>12, 112, 303</td>
</tr>
<tr>
<td>Teleorhinus Uhler</td>
<td>298, 303</td>
</tr>
<tr>
<td>Tenuis Odhiambo, Hallodapus</td>
<td>94</td>
</tr>
<tr>
<td>Tradouwensis Schuh, Capecapsus</td>
<td>13, 147, 154</td>
</tr>
<tr>
<td>Transvaalensis Schuh, Carinogulus</td>
<td>11, 87</td>
</tr>
<tr>
<td>Transvaalensis Schuh, Coatonocapsus</td>
<td>13</td>
</tr>
<tr>
<td>Transvaalensis Schuh, Hallodapus</td>
<td>11, 94, 100</td>
</tr>
<tr>
<td>Transvaalensis Schuh, Paramonea</td>
<td>14, 208</td>
</tr>
<tr>
<td>Transvaalensis Schuh, Pseudoloxops</td>
<td>10, 45</td>
</tr>
<tr>
<td>Trichophorella Reuter</td>
<td>12, 114, 303</td>
</tr>
<tr>
<td>Trichophthalmocapsus Poppius</td>
<td>12, 94, 117, 303</td>
</tr>
<tr>
<td>Trifasciatus Schuh, Karooocapsus</td>
<td>12, 134</td>
</tr>
<tr>
<td>Troitskiella Poppius</td>
<td>210, 208</td>
</tr>
<tr>
<td>Tuxeniella Carvalho</td>
<td>286, 315</td>
</tr>
<tr>
<td>Tylopehtis Reuter</td>
<td>303, 317</td>
</tr>
<tr>
<td>Tyrelleuus</td>
<td>94</td>
</tr>
<tr>
<td>Tytthus Fieber</td>
<td>12, 135, 307</td>
</tr>
<tr>
<td>Varii Schuh, Carinogulus</td>
<td>11, 88</td>
</tr>
<tr>
<td>Venustata Odhiambo, Pangania</td>
<td>105</td>
</tr>
<tr>
<td>Vertelicus Odhiambo, Hallodapus</td>
<td>94</td>
</tr>
<tr>
<td>Viridipunctata (Stal), Brachycranella [Capsus]</td>
<td>12, 146</td>
</tr>
<tr>
<td>Vittatus Odhiambo), Hallodapus [Trichophthalmocapsus]</td>
<td>11, 94, 103, 118</td>
</tr>
</tbody>
</table>
Widdringtoniola Schuh 13, 194

Zanchiella Schuh 11, 49
Zanchisme Kirkaldy 315, 319
Zanchius Distant 11, 58
Zaratus Distant 315
zeugma (Odhiambo), Skukuza [Formicopsella] 12, 111